首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps. Electronic absorption, X-band electron paramagnetic resonance (EPR), and V K-edge X-ray absorption (XAS) spectra were recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. It is unequivocally shown that the electronic structure of complexes is best described as [V(III)((t)bpy(0))(3)](3+), [V(II)((t)bpy(0))(3)](2+), [V(II)((t)bpy(?))(2)((t)bpy(0))](0), and [V(II)((t)bpy(?))(3)](1-), where ((t)bpy(0)) represents the neutral form of the ligand and ((t)bpy(?))(1-) is the one-electron reduced mononanionic radical form. In the neutral and monoanionic members, containing two and three ((t)bpy(?))(1-) ligands, respectively, the ligand spins are strongly antiferromagnetically coupled to the spins of the central V(II) ion (d(3); S = (3)/(2)) affording the observed ground states given above.  相似文献   

3.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

4.
Four members of the electron-transfer series [Fe(NO)(S(2)C(2)R(2))2]z (z = 1+, 0, 1-, 2-) have been isolated as solid materials (R = p-tolyl): [1a](BF4), [1a]0, [Co(Cp)2][1a], and [Co(Cp)2]2[1a]. In addition, complexes [2a]0 (R = 4,4-diphenyl), [3a]0 (R = p-methoxyphenyl), [Et(4)N][4a] (R = phenyl), and [PPh(4)][5a] (R = -CN) have been synthesized and the members of each of their electron-transfer series electrochemically generated in CH(2)Cl(2) solution. All species have been characterized electro- and magnetochemically. Their electronic, M?ssbauer, and electron paramagnetic resonance spectra as well as their infrared spectra have been recorded in order to elucidate the electronic structure of each member of the electron-transfer series. It is shown that the monocationic, neutral, and monoanionic species possess an {FeNO}6 (S = 0) moiety where the redox chemistry is sulfur ligand-based, (L)2-(L*)1-: [Fe(NO)(L*)2]+ (S = 0), [Fe(NO)(L*)(L)]0 <--> [Fe(NO)(L)(L*)]0 (S = 1/2), [Fe(NO)(L)2]- (S = 0). Further one-electron reduction generates a dianion with an {FeNO}7 (S = 1/2) unit and two fully reduced, diamagnetic dianions L2-: [Fe(NO)(L)2]2- (S = 1/2).  相似文献   

5.
The geometric structure of the confacial bioctahedral [Re(2)Cl(9)](z)()(-) anion has been determined by single-crystal X-ray diffraction in two distinct oxidation states, Re(IV)(2) and Re(III)Re(IV). [Bu(4)N][Re(2)Cl(9)] crystallizes in the monoclinic space group P2(1)/m [a/? = 10.6363(3), b/? = 11.420(1), c/? = 13.612(1), beta/deg = 111.18(1), Z = 2], while [Et(4)N](2)[Re(2)Cl(9)] crystallizes in the orthorhombic space group Pnma [a/? = 15.82(1), b/? = 8.55(2), c/? = 22.52(3), Z = 4]. The Re-Re separation contracts from 2.704(1) ? in [Bu(4)N][Re(2)Cl(9)] to 2.473(4) ? in [Et(4)N](2)[Re(2)Cl(9)] (or, equivalently, from 2.725 to 2.481 ? after standard corrections for thermal motions), while the formal metal-metal bond order falls from 3.0 to 2.5. SCF-Xalpha-SW molecular orbital calculations show that, despite the {d(3)d(3)} configuration, the single sigma bond in [Re(2)Cl(9)](-) dominates the observed structural properties. For [Re(2)Cl(9)](2)(-), the 0.23 ? contraction in Re-Re is attributed jointly to radial expansion of the Re 5d orbitals and to diminished metal-metal electrostatic repulsion, which act in concert to make both sigma and delta(pi) bonding more important in the reduced species. Computed transition energies and oscillator strengths for the two structurally defined anions permit rational analysis of their ultraviolet spectra, which involve both sigma --> sigma and halide-to-metal change-transfer absorptions. The intense sigma --> sigma band progresses from 31 000 cm(-)(1) in [Re(2)Cl(9)](-) to 36 400 cm(-)(1) in [Re(2)Cl(9)](2)(-), according to the present assignments. For electrogenerated, highly reactive [Re(2)Cl(9)](3)(-) (where conventional X-ray structural information is unlikely to become available), the dominant absorption band advances to 40 000 cm(-)(1), suggesting further strengthening of the metal-metal sigma bond in the Re(III)(2) species.  相似文献   

6.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

7.
The molecular geometries and the nuclear spin-spin coupling constants of the complexes [(NC)(5)Pt-Tl(CN)(n)](n-), n = 0-3, and the related system [(NC)(5)Pt-Tl-Pt(CN)(5)](3-) are studied. These complexes have received considerable interest since the first characterization of the n = 1 system by Glaser and co-workers in 1995 [J. Am. Chem. Soc. 1995, 117, 7550-7551]. For instance, these systems exhibit outstanding NMR properties, such as extremely large Pt-Tl spin-spin coupling constants. For the present work, all nuclear spin-spin coupling constants J(Pt-Tl), J(Pt-C), and J(Tl-C) have been computed by means of a two-component relativistic density functional approach. It is demonstrated by the application of increasingly accurate computational models that both the huge J(Pt-Tl) for the complex (NC)(5)Pt-Tl and the whole experimental trend among the series are entirely due to solvent effects. An approximate inclusion of the bulk solvent effects by means of a continuum model, in addition to the direct coordination, proves to be crucial. Similarly drastic effects are reported for the coupling constants between the heavy atoms and the carbon nuclei. A computational model employing the statistical average of orbital-dependent model potentials (SAOP) in addition to the solvent effects allows to accurately reproduce the experimental coupling constants within reasonable limits.  相似文献   

8.
The electron transfer series of complexes [Cr((t)bpy)(3)](n)(PF(6))(n) (n = 3+, 2+, 1+, 0 (1-4)) has been synthesized and the molecular structures of 1, 2, and 3 have been determined by single-crystal X-ray crystallography; the structure of 4 has been investigated using extended X-ray absorption fine structure (EXAFS) analysis. Magnetic susceptibility measurements (4-300 K) established an S = 3/2 ground state for 1, an S = 1 ground state for 2, an S = 1/2 ground state for 3, and an S = 0 ground state for 4. The electrochemistry of this series in CH(3)CN solution exhibits three reversible one-electron transfer waves. UV-vis/NIR spectra and Cr K-edge X-ray absorption spectra (XAS) are reported. The same experimental techniques have been applied for [Cr(III)(tacn)(2)]Br(3)·5H(2)O (5) and [Cr(II)(tacn)(2)]Cl(2) (6), which possess an S = 3/2 and an S = 2 ground state, respectively (tacn = 1,4,7-triazacyclononane, a tridentate, pure σ-donor ligand). The Cr K-edge XAS spectra of the corresponding complexes K(4)[Cr(II)(CN)(6)]·10H(2)O (S = 1) (7) and K(3)[Cr(III)(CN)(6)] (S = 3/2) (8) have also been recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. The molecular and electronic structures of the anionic members of the series [Cr(bpy)(3)](1-,2-,3-) have also been calculated. It is unequivocally shown that all members of the electron transfer series 1-4 and [Cr(bpy)(3)](n) (n = 3+, 2+, 1+, 0, 1-, 2, 3-) possess a central Cr(III) ion ((t(2g))(3), S = 3/2). The three N,N'-coordinated neutral (bpy(0)) ligands in the trication 1 and [Cr(III)(bpy)(3)](3+) are one-electron reduced in a stepwise fashion to localized one, two, and three π-radical anions (bpy(?))(1-) in the dicationic, monocationic, and neutral species, respectively. Complexes 2 and [Cr(bpy)(3)](2+) cannot be described as low-spin Cr(II) species; they are in fact best described as [Cr(III)((t)bpy(?))((t)bpy(0))(2)](2+) and [Cr(III)(bpy(?))(bpy(0))(2)](2+) species. Further one-electron reductions yield one, two, and three diamagnetic (bpy(2-))(2-) dianions in the mono-, di-, and trianion. Thus, [Cr(III)(bpy(2-))(3)](3-) is a normal Werner-type Cr(III) (!) species. In all complexes containing (bpy(?))(1-) ligands, the ligand spins are strongly antiferromagnetically coupled to the spins of the central Cr(III) ion (d(3), S(Cr) = 3/2) affording the observed ground states given above. Thus, all redox chemistry of [Cr(bpy)(3)](n) complexes is ligand-based and documents that the ligand 2,2'-bipyridine is a redox noninnocent ligand; it exists in three oxidation levels in these complexes: as N,N'-coordinated neutral (bpy(0)), monoanionic π-radical (bpy(?))(1-), and diamagnetic dianionic (bpy(2-))(2-).  相似文献   

9.
The four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion. Single-crystal X-ray diffraction studies of 1 and 2 performed at 100(2) K reveal a distorted tetrahedral coordination environment at the iron centers, as a result of the intramolecular pi-pi interactions between C(6)F(5) rings. The electronic structures of 1 and 2 were unambiguously determined by a combination of (57)Fe M?ssbauer and electronic spectroscopy, magnetic susceptibility measurements, X-ray crystallography, and DFT calculations. Compound 1 contains an intermediate-spin Fe(III) ion (S(Fe)=3/2) strongly antiferromagnetically coupled to a pi-ligand radical (S(R)=1/2) yielding an S(t)=1 ground state. Complex 2 possesses a high-spin Fe(II) center (S(Fe)=2) with two closed-shell dianionic ligands. Complexes 1 and 2 are members of the redox series [Fe(pda)(2)](n) with n=0 for 1 and n=2- for 2. The anion n=1- has been reported previously in the coordination salt [Fe(dad)(3)][Fe(pda)(2)] (3; dad=N,N'-bis(phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene). A complicated temperature-dependent electronic structure has been observed for this salt. Here, DFT calculations performed on 3 confirm the previous assignments of spin- and oxidation-states. Thus, [Fe(pda)(2)](n) (n=0, 1-, 2-) constitutes an electron-transfer series, which has also been established by cyclic voltammetry; the mono- and dications (n=1+ and 2+) are also accessible in solution, but have not been further investigated. The (57)Fe M?ssbauer spectra of [Fe(pda)(2)](n) species in 1 and 3 show extremely large quadrupole splitting constants due to addition of the valence and covalence contributions that have been confirmed by DFT calculations.  相似文献   

10.
The results of all-electron density functional calculations on the bimetallic cluster compounds [M(4){Fe(CO)(4)}(4)](4-) (M = Cu, Ag, Au) and on the corresponding naked species M(4)Fe(4) are reported. The trends within the triad have been investigated. The bare metal clusters exhibit a strong magnetization which is quenched on addition of CO ligands. The bonding in the bare clusters is different for the silver derivative compared to that of copper and gold, resulting in comparatively weaker Ag-Fe and Ag-Ag bonds. This can be rationalized in terms of the different d-sp mixing, which for Cu and Au is larger than for Ag. Relativistic effects act to increase the 4d-5s mixing in Ag and to strengthen the intermetallic bond with Fe. In the carbonylated clusters a charge transfer from the metal M (M = Cu, Ag, or Au) to the Fe(CO)(4) groups occurs so that the atoms M can be considered in a formal +I oxidation state, rationalizing the nearly square-planar geometry of the metal frame. In fact, the local coordination of the M atoms is almost linear, as expected for complexes of M(I). The addition of extra electrons results in a stabilization of the clusters, indicating the electron-deficient nature of these compounds. Similar features have been found for the largest cluster synthesized so far for this class of compounds, [Ag(13){Fe(CO)(4)}(8)](n)(-), (n = 0-5). The nature and localization of the unpaired electron in the tetraanion is also discussed.  相似文献   

11.
Density functional theory is used to probe the reaction of O(2) with the unsaturated transition-metal fragments [M(bipy)(2)](2+), M = Cr, Fe. In both cases, calculations indicate that the O(2) molecule is initially trapped as an eta(2)-bound superoxide ion, where the unpaired electron in the out-of-plane pi orbital of O(2) is weakly coupled to those on the trivalent metal ion. In the chromium case, a cis-dioxo Cr(VI) complex is found to be significantly more stable than the superoxo species. The two minima are, however, separated by a large barrier, along with a change in spin state. For the iron analogue, the relative energies of the two minima are reversed, the superoxo complex being the global minimum. The energetics of the O(2) activation processes are consistent with previously reported mass spectrometric experiments, where an adduct, [M(bipy)(2)(O(2))](2+), was detected only for chromium.  相似文献   

12.
The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)]] with tellurium. X-ray structural determinations revealed dimeric structures [Li(THF)(2)[PhP(E)(N(t)Bu)(2)]](2) in which the monomeric units are linked by Li-E bonds. In the case of E = Se or Te, but not for E = S, transannular Li-E interactions are also observed, resulting in a six-rung ladder. By contrast, for E = O, this synthetic approach yields the Li(2)O-templated tetramer [(THF)Li(2)[PhP(O)(N(t)Bu)(2)]](4).Li(2)O in THF or the tetramer [(Et(2)O)(0.5)Li(2)[PhP(O)(N(t)Bu)(2)]](4) in diethyl ether. The reaction of trimethylaluminum with PhP(E)(NH(t)Bu)(2) produces the complexes Me(2)Al[PhP(E)(N(t)Bu)(NH(t)Bu)] (E = S, Se), which were shown by X-ray crystallography to be N,E-chelated monomers.  相似文献   

13.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

14.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

15.
Reaction of Mo(2)Cl(4)(dppm)(2) (dppm = bis(diphenylphosphino)methane) with 6 equiv of [n-Bu(4)N][CN] or [Et(4)N][CN] in dichloromethane yields [n-Bu(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (1) and [Et(4)N](2)[Mo(2)(CN)(6)(dppm)(2)] (2), respectively. The corresponding one- and two-electron oxidation products [n-Bu(4)N][Mo(2)(CN)(6)(dppm)(2)] (3) and Mo(2)(CN)(6)(dppm)(2) (4)were prepared by reactions of 1 with the oxidant NOBF(4). Single-crystal X-ray structures of 2.2CH(3)CN, 3.2CH(3)CN.2H(2)O, and 4.2CH(3)NO(2) were performed, and the results confirmed that all three complexes contain identical ligand sets with trans dppm ligands bisecting the Mo(2)(mu-CN)(2)(CN)(4) equatorial plane. The binding of the bridging cyanide ligands is affected by the oxidation state of the dimolybdenum core as evidenced by an increase in side-on pi-bonding overlap of the mu-CN in going from 1 to 4. The greater extent of pi-donation into Mo orbitals is accompanied by a lengthening of the Mo-Mo distance (2.736(1) A in Mo(2)(II,II) (2), 2.830(1) A in Mo(2)(II,III) (3), and 2.936(1) A in Mo(2)(III,III) (4)). A computational study of the closed-shell members of this homologous series, [Mo(2)(CN)(6)(dppm)(2)](n)() (n = 2-, 0), indicates that the more pronounced side-on pi-donation evident in the X-ray structure of 4 leads to significant destabilization of the delta orbital and marginal stabilization of the delta() orbitals with respect to nearly degenerate delta and delta orbitals in the parent compound, 2. The loss of delta contributions combined with the reduced orbital overlap due to higher charges on molybdenum centers in oxidized complexes 3 and 4 is responsible for the observed increase in the length of the Mo-Mo bond.  相似文献   

16.
17.
The first chainlike germanate, [Ge(7)O(13)(OH)(2)F(3)](3)(-).Cl(-).2[Ni(dien)(2)](2+), has been solvothermally synthesized by using Ni(dien)(2)(2+) cations as the template and characterized by IR, SEM, TGA, powder X-ray diffraction (PXRD), energy-dispersive X-ray analysis (EDXA), elemental analysis, and single-crystal X-ray diffraction, respectively. This compound crystallized in the monoclinic space group P2/nwith a = 8.8904(2) A, b = 17.4374(3) A, c = 13.2110(3) A, beta = 101.352(1) degrees, V = 2007.97(7) A(3), and Z = 2. Interestingly, the structure contains two types of chiral mer-[Ni(dien)(2)](2+) cations and two types of chiral chains, one left-handed and the other right-handed, which lead to a racemic compound. The orderly separation of achiral s-fac-[Ni(dien)(2)](2+) and chiral mer-[Ni(dien)(2)](2+) isomers was found in the structure. The structure is stabilized by N-H.O(F, Cl) hydrogen bonds.  相似文献   

18.
Photoelectron spectroscopy is combined with ab initio calculations to study the microsolvation of the dicyanamide anion, N(CN)(2)(-). Photoelectron spectra of [N(CN)(2)(-)](H2O)n (n = 0-12) have been measured at room temperature and also at low temperature for n = 0-4. Vibrationally resolved photoelectron spectra are obtained for N(CN)(2)(-), allowing the electron affinity of the N(CN)2 radical to be determined accurately as 4.135 +/- 0.010 eV. The electron binding energies and the spectral width of the hydrated clusters are observed to increase with the number of water molecules. The first five waters are observed to provide significant stabilization to the solute, whereas the stabilization becomes weaker for n > 5. The spectral width, which carries information about the solvent reorganization upon electron detachment in [N(CN)(2)(-)](H2O)n, levels off for n > 6. Theoretical calculations reveal several close-lying isomers for n = 1 and 2 due to the fact that the N(CN)(2)(-) anion possesses three almost equivalent hydration sites. In all the hydrated clusters, the most stable structures consist of a water cluster solvating one end of the N(CN)(2)(-) anion.  相似文献   

19.
Cui Z  Henderson RA 《Inorganic chemistry》2002,41(16):4158-4166
Kinetic studies, using stopped-flow spectrophotometry, on the reactions of [M(4)(SPh)(10)](2)(-) (M = Fe or Co) with PhS(-) to form [M(SPh)(4)](2)(-) are described, as are the reactions between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) to form [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). The kinetics of the reactions with PhS(-) are consistent with an initial associative substitution mechanism involving attack of PhS(-) at one of the tetrahedral M sites of [M(4)(SPh)(10)](2)(-) to form [M(4)(SPh)(11)](3)(-). Subsequent or concomitant cleavage of a micro-SPh ligand, at the same M, initiates a cascade of rapid reactions which result ultimately in the complete rupture of the cluster and formation of [M(SPh)(4)](2)(-). The kinetics of the reaction between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) indicate an initial dissociative substitution mechanism at low concentrations of [MoS(4)](2)(-), in which rate-limiting dissociation of a terminal thiolate from [M(4)(SPh)(10)](2)(-) produces [M(4)(SPh)(9)](-) and the coordinatively unsaturated M site is rapidly attacked by a sulfido group of [MoS(4)](2)(-). It is proposed that subsequent chelation of the MoS(4) ligand results in cleavage of an M-micro-SPh bond, initiating a cascade of reactions which lead to the ultimate break-up of the cluster and formation of the products, [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). With [Co(4)(SPh)(10)](2)(-), at higher concentrations of [MoS(4)](2)(-), a further substitution pathway is evident which exhibits a second order dependence on the concentration of [MoS(4)](2)(-). The mechanistic picture of cluster disruption which emerges from these studies rationalizes the "all or nothing" reactivity of [M(4)(SPh)(10)](2)(-).  相似文献   

20.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号