首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photophysical characteristics of the ground and excited states of 2-naphthylamine-6-sulfonate (2-NA-6-S) were investigated in different solvents and in beta-cyclodextrin (beta-CD). The spectral shifts are well correlated with Kamlet-Taft relationship. Multiple linear regression analysis indicated that both non-specific dipolar interaction and specific hydrogen bonding interactions play competitive roles in determining the position of the absorption maximum, while the dipolar interaction is the dominating parameter in determining the emission maximum. For the Stokes shift, both the nonspecific interaction and the hydrogen donation property of the solvent are participating equally. The molecular encapsulation of 2-NA-6-S by beta-CD in aqueous solution has been studied by different spectroscopic techniques. Fluorescence measurements show that the dielectric constant of beta-CD experienced by the included 2-NA-6-S is intermediate between water and methanol. The changes observed in the absorption and fluorescence spectra of 2-NA-6-S upon inclusion in beta-CD allowed the association constant to be calculated and found to be 465+/-100 and 495+/-100 M-1, respectively. The changes observed for the chemical shifts of 2-NA-6-S and beta-CD 1H NMR spectra and the corresponding 1H NMR spectra of their mixture confirmed the formation of the inclusion complex and showed that 2-NA-6-S is encapsulated in beta-CD cavity in a tilted equatorial approach.  相似文献   

2.
Intramolecular charge transfer (ICT) that occurs upon photoexcitation of molecules is a vital process in nature and it has ample applications in chemistry and biology. The ICT process of the excited molecules is affected by several environmental factors including polarity, viscosity and hydrogen bonding. The effect of polarity and viscosity on the ICT processes is well understood. But, despite the fact that hydrogen bonding significantly influences the ICT process, the specific role of hydrogen bonding in the formation and stabilization of the ICT state is not unambiguously established. Some literature reports predicted that the hydrogen bonding of the solvent with a donor promotes the formation of a twisted intramolecular charge transfer (TICT) state. Some other reports stated that it inhibits the formation of the TICT state. Alternatively, it was proposed that the hydrogen bonding of the solvent with an acceptor favors the TICT state. It is also observed that a dynamic equilibrium is established between the free and the hydrogen bonded ICT states. This perspective focuses on the specific role played by hydrogen bonding of the solvent with the donor and the acceptor, and by proton transfer in the ICT process. The utility of such influence in molecular recognition and anion sensing is discussed with a few recent literature examples in the end.  相似文献   

3.
4.
Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.  相似文献   

5.
Quantum-chemical calculations with the time-dependent density function theory (TDDFT) have been carried out for 5-phenyl-5H-phenanthridin-6-one (PP). For this molecule, dual fluorescence and in- tramolecular charge transfer (ICT) were experimentally observed. The B3LYP functional with 6-311 G (2d, p) basis set has been used for the theoretical calculations. The solvent effects have been described within the polarizable continuum model (PCM). Ground-state geometry optimization reveals that the phenyl/phenanthridinone dihedral angle equals 90.0°, a nearly perpendicular structure. Vertical ab- sorption energy calculations characterize the lower singlet excited states both in gas phase and in solvents. It can be found that the lower excited states have locally excitation (LE) feature. Through constructing the potential energy curves of both isolated and solvated systems describing the LE→ICT reaction and fluorescence emission, we obtain the enthalpy difference ΔH between the LE and ICT states, energy barrier Ea, and energy difference δEFC, indicating the structural changes taking place during the ICT reaction. Potential curve and calculated emission energies for both isolated and sol- vated systems show a dual fluorescence phenomenon, consisting of a LE emission band and a red-shifted ICT band. Our calculations including the solvent effects indicate that the dual fluorescence is brought about by the change in molecular structure connected with the planarization of the twisted N-phenylphenanthridinone during the ICT reaction.  相似文献   

6.
An investigation of a series of platinum-containing organometallic complexes for the study of fluorescence phenomena in organometallic chromophores controlled by the intramolecular charge transfer (ICT) is presented in this work. We report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the substituent effects on the ICT and fluorescence emission. We demonstrate that the fluorescence maximum and lifetimes greatly depend on different substituents and the presence of bimetallic platinum donor. This work paves the way for an understanding of the fluorescence phenomena controlled by molecular ICT characters of these kinds of platinum-containing organometallic complexes.  相似文献   

7.
The calculated structures of furan as a monomer, a dimer that was isolated from the crystal structure, and the full crystal structure have been thoroughly investigated by a combination of density functional theory (DFT) calculations and inelastic neutron scattering (INS) measurements. To improve our understanding of the nature and magnitude of the intermolecular interactions in the solid, the atoms in molecules (AIM) theory has been applied to the dimer and a cluster of eight monomers. After a careful topological study of the theoretical charge density and of its Laplacian, we have established the existence of C-H...pi, C-H...O, and H...H interactions between adjacent molecules in solid furan. The electron distribution has also been analyzed by performing natural bond orbital (NBO) calculations for the monomer and a H-bonded dimer. When the hydrogen bond is established between two adjacent furan rings, some electron charge is transferred from the pi electronic system of one furan ring to the other molecule in the dimer. This result provides a model of the interaction between end groups of neighboring chains of polyfuran and could be applicable to other conjugated polymers where the pi system is responsible for their conducting properties. To determine how the intermolecular bonds in the solid affect the vibrational dynamics in the periodic system, INS data were analyzed by performing molecular and periodic density functional calculations. Reasonable agreement is achieved, although we note that the poorest agreement is for modes involving hydrogen atoms.  相似文献   

8.
The solvatochromic behavior of two newly synthesized naphthalimide derivatives (I and II) which have potential antioxidative activities in anticarcinogenic drug development treatment, has been monitored in protic and aprotic solvents of different polarity applying steady-state and time-resolved fluorescence techniques. The compounds exhibit unique photophysical response in different solvent environments. The spectral trends do not appear to originate only from changes in the solvent polarity but also indicate that hydrogen bonding interactions and intramolecular charge transfer (ICT) influence the energy of electronic excitation of the compounds. Incorporation of an amino group at C(4) position of the naphthalimide ring in II makes it behave differently from I in terms of spectral characterization and fluorescence efficacy of the systems. The nonradiative relaxation process of the compounds is governed by medium polarity. The ground state geometry, lowest energy transition, and the UV-vis absorption energy of the compounds were studied using density functional theory (DFT) and time-dependent density functional theory (TDDFT) at the B3LYP/6-31G* level, which showed that the calculated outcomes were in good agreement with experimental data.  相似文献   

9.
6-N,N-Dimethyl-9-methyladenine (DMPURM) and 6-N,N-dimethyladenine (DMPURH) show dual fluorescence from a locally excited (LE) and an intramolecular charge transfer (ICT) state in solvents of different polarity over extended temperature ranges. The fluorescence quantum yields are very small, in particular those of LE. For DMPURM in acetonitrile (MeCN) at 25 °C, for example, Φ'(ICT) = 3.2 × 10(-3) and Φ(LE) = 1.6 × 10(-4). The large value of Φ'(ICT)/Φ(LE) indicates that the forward LE → ICT reaction is much faster than the back reaction. The data obtained for the intersystem crossing yield Φ(ISC) show that internal conversion (IC) is the dominant deactivation channel from LE directly to the ground state S(0). For DMPURM in MeCN with Φ(ISC) = 0.22, Φ(IC) = 1 - Φ(ISC) - Φ'(ICT) - Φ(LE) = 0.78, whereas in cyclohexane an even larger Φ(IC) of 0.97 is found. The dipole moment gradually increases upon excitation, from 2.5 D (S(0)), via 6 D (LE) to 9 D (ICT) for DMPURM and from 2.3 D (S(0)), via 7 D (LE) to 8 D (ICT) for DMPURH. From the temperature dependence of Φ'(ICT)/Φ(LE), a reaction enthalpy -ΔH of 11 kJ/mol is obtained for DMPURM in n-hexane (ε(25) = 1.88), increasing to 17 kJ/mol in the more polar solvent di-n-butyl ether (ε(25) = 3.05). With DMPURM in diethyl ether, an activation energy of 8.3 kJ/mol is determined for the LE → ICT reaction (k(a)). The femtosecond excited state absorption spectra at 22 °C undergo an ultrafast decay: 1.0 ps in CHX and 0.63 ps in MeCN for DMPURM, still shorter (0.46 ps) for DMPURH in MeCN. With DMPURM in n-hexane, the LE fluorescence decay time τ(2) increases upon cooling from 2.6 ps at -45 °C to 6.9 ps at -95 °C. The decay involves ICT and IC as the two main pathways: 1/τ(2) ? k(a) + k(IC). As a model compound (no ICT) is not available, its lifetime τ(0)(LE) ~ 1/k(IC) is not known, which prevents a separate determination of k(a). The excited state reactions of DMPURM and DMPURH are treated with a two-state model: S(0) → LE ? ICT. With 6-N-methyl-9-methyladenine (MPURM) and 9-methyladenine (PURM), the fluorescence quantum yield is very low (<5 × 10(-5)) and dominated by impurities, due to enhanced IC from LE to S(0).  相似文献   

10.
11.
The photophysical properties of a new compound 1-keto-2-(p-dimethylaminobenzal)-tetrahydronaphthalene in various solvents at room temperature were characterized by the absorption and steady-state fluorescence technique. The bathochromic shift on the emission spectra, the broad halfwidth of the fluorescence band and the increase in the excited state dipole moment occurred. These results gave the evidence about the intramolecular charge transfer (ICT) character in the emitting singlet state of the compound.  相似文献   

12.
研究了水溶液中对二甲氨基苯甲(DMABA)分子内扭转电荷转移(TICT)的胶束效应.胶束能促进DMABA的TICT过程,并导致DMABA的总荧光量子产率提高和TICT荧光峰的显著蓝移,DMABA的TICT荧光强度与正常荧光带的强度之比与DMABA的浓度之间有线性关系,胶束存在时该直线的斜率提高,认为DMABA的TICT激发态涉及两个DMABA分子,并且影响DMABA的TICT激发态相对布居的主要因素是其与相应的三重态和基态的能隙.讨论了DMABA的TICT激发态的可能结构及胶束效应的本质.  相似文献   

13.
A series of 2-pyridyl pyrazoles 1a and 1-5 with various functional groups attached to either pyrazole or pyridyl moieties have been strategically designed and synthesized in an aim to probe the hydrogen bonding strength in the ground state versus dynamics of excited-state intramolecular proton transfer (ESIPT) reaction. The title compounds all possess a five-membered-ring (pyrazole)N-H···N(pyridine) intramolecular hydrogen bond, in which both the N-H bond and the electron density distribution of the pyridyl nitrogen lone-pair electrons are rather directional, so that the hydrogen bonding strength is relatively weak, which is sensitive to the perturbation of subtle chemical substitution and consequently reflected from the associated ESIPT dynamics. Various approaches such as (1)H NMR (N-H proton) to probe the hydrogen bonding strength and absorption titration to assess the acidity-basicity property were made for all the title analogues. The results, together with supplementary support provided by a computational approach, affirm that the increase of acidity (basicity) on the hydrogen bonding donor (acceptor) sites leads to an increase of hydrogen-bonding strength among the title 2-pyridyl pyrazoles. Luminescence results and the associated ESIPT dynamics further reveal an empirical correlation in that the increase of the hydrogen bonding strength leads to an increase of the rate of ESIPT for the title 2-pyridyl pyrazoles, demonstrating an interesting relationship among N-H acidity, hydrogen bonding strength, and the associated ESIPT rate.  相似文献   

14.
2-Indanol in its most stable form is stabilized by internal hydrogen bonding, which exists between the hydroxyl hydrogen atom and the pi-cloud of the benzene ring. A comprehensive ab initio calculation using the MP2/cc-pVTZ level of theory showed that 2-indanol can exist in four possible conformations, which can interchange through the ring-puckering vibration and the internal rotation of the OH group on the five-membered ring. A potential energy surface in terms of these two vibrational coordinates was calculated. Density functional theory calculations were used to predict the vibrational frequencies and to help in normal mode assignments. Fluorescence excitation spectra of 2-indanol confirm the presence of the four conformers in the electronic ground and excited states. The spectral intensities indicate that, at 90 degrees C, 82% of the molecules exist in its most stable form with the intramolecular hydrogen bonding. The other isomers are present at approximately 11, 5, and 3%. The MP2/6-311++G(d,p) calculation predicts a distribution of 70, 13, 9, and 8% at 90 degrees C, the experimental sample temperature.  相似文献   

15.
2-(2′,6′-Dihydroxyphenyl)benzoxazole (DHBO) has been synthesized by using palladium-catalyzed oxidative cyclization. The compound utilizes both O-H···N and O-H···O bonds to ensure a coplanar structure between the benzoxazole and phenol fragments. Optical comparison with the parent compound 2-(2′-hydroxyphenyl)benzoxazole (HBO) reveals that the dual hydrogen bonding in DHBO plays an essential role in raising the desirable keto emission for ESIPT and tuning the polarity sensitivity toward the molecular environment. DHBO also exhibits a higher quantum yield (?fl = 0.108 in methanol) than HBO (?fl = 0.0025) in the same solvent.  相似文献   

16.
The photophysical properties of 4-hydroxy-3,5-dimethoxybenzaldehyde (HDMB) in various solvents, pH and in aqueous beta-cyclodextrin (CD) have been investigated. In non-polar solvents, HDMB gives only one emission maxima; whereas, in polar solvents it shows a dual luminescence. The increase in Stokes shift with increase in polarity is much more for longer wavelength (LW) than for a shorter wavelength (SW) band. This behaviour indicates the formation of an intramolecular charge transfer (ICT) state through relaxation from the normal excited state. Especially in water, the ICT emission is further red shifted to 430 nm with the normal emission band at 330 nm and the relative fluorescence intensities between 330 nm and 430 nm emission bands are affected by the excitation wavelength. However, this excitation wavelength dependence is not large in aqueous beta-CD solutions. These results suggest that the ICT state in polar solvents/water is stabilized through exciplex formation by the hydrogen-bonding interaction between the carbonyl group and polar solvents/water. The ground and excited state pK(a) values for the neutral-monoanion equilibrium have been measured and discussed. HDMB forms a 1:1 inclusion complex with beta-CD. A mechanism is proposed to explain the inclusion process.  相似文献   

17.
The effect of some substituents on intramolecular hydrogen bonding of 5‐X‐2‐hydroxybenzaldehyde (5‐X‐2‐HBA) has been studied by B3LYP and MP2 methods using 6‐311++G** and AUG‐cc‐PVTZ basis sets. The relationship between hydrogen bond energy EHB and electron donation (or withdrawal) of substituents has been investigated. An approximately good linear relationship has been detected between Hammett coefficients and hydrogen bond formation energy (R2 = 0.98). Herein, population analysis has been performed by atoms in molecules (AIM) and natural bond orbital (NBO) methods. The results of AIM and NBO analyses are in a good agreement with calculated energy values. Furthermore, correlation between ring aromaticity and hydrogen bonding has been investigated by nucleus‐independent chemical shift (NICS) at GIAO/B3LYP/6‐311++G** level of theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

18.
The potential energy surface and the reaction pathway for the intramolecular hydrogen transfer in o-hydroxyaryl ketimines are characterized using DFT methods. Structural changes in the proton-transfer process in quasi-aromatic hydrogen bonding are described. A transition state and a state with a low proton-transfer barrier were studied in sterically compressed o-hydroxyaryl ketimines (2(N-methyl-alpha-iminoethyl)phenols) possessing two potential minimums. The potentials for proton vibration in the OH and HN tautomers of o-hydroxyaryl ketimines were investigated and anharmonic frequencies were determined. Solvent and substituent effects were analyzed. The energies of the various conformers of the OH and HN tautomers were compared with the related forms of o-hydroxyaryl aldimine.  相似文献   

19.
Experimental and theoretical methods were used to study newly synthesized thiophene-pi-conjugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-withdrawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-transfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric conformations. In addition, a novel S(2) fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S(2) fluorescence. We demonstrate that S(2) fluorescence can be explained by the calculated energy gap between the S(2) and S(1) states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号