首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of electrically insulating synthetic materials, such as high-density polyethylene (HDPE), for fuel pipelines and other fuel handling components is now widespread. It is well reported however that the flow of fuel under certain conditions in plastic pipes can produce measurable levels of electrostatic charge.This paper describes in detail a full-scale experimental test rig simulating a filling station layout – in particular the conditions existing during road tanker delivery of high-charging fuels. It presents data from a series of electrostatic measurements, discusses results and draws conclusions with regard to existing safety margins and precautions for safe operation.  相似文献   

2.
This paper describes a transient electric charging phenomenon due to flow-induced electrification during a cold startup of dielectric liquids in a recirculation system. This transitory effect exhibits itself as a static voltage spike in the system. It is argued that simultaneous rise in the liquid temperature and the circulation flow rate can generate conditions for such electrostatic voltage spikes to exist. These spikes have been verified experimentally in the laboratory and we report qualitative agreements between the reported experimental data and the theoretical considerations. With a cold start, this transient charging has the potential to induce a large static voltage and large space charge in the circulating system that can damage other components.  相似文献   

3.
《Journal of Electrostatics》2006,64(7-9):471-476
Static electrification characteristics of dimethyl ether (DME) were studied considering accidents during unloading (discharging) operations. Producing mist flow, static electrification by the mist was studied as a first step. Influences of flow velocity on the charge generation, produced potential, charge generation ratio, electrostatic energy, etc. were investigated experimentally. Although the produced charge is not too big, it will be requested to pay full attention during the handling process, considering the igniting characteristics of DME.  相似文献   

4.
A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.  相似文献   

5.
The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.  相似文献   

6.
An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common chaparral species. Four species (Manzanita sp., Ceanothus sp., Quercus sp., and Arctostaphylos sp.), two wind velocities (0 and 2 m/s), two fuel bed depths (20 and 40 cm), and three slope percents (0%, 40%, or 70%) were used. Oven-dry moisture content M of fine fuels (<6.25 mm diameter) ranged from 29% to 105%. Sixty-five of 115 fires successfully propagated the length (2.0 m) of the elevated fuel bed. A previously derived empirical marginal burning criterion was assessed, and a suitable modification was proposed for live chaparral fuels. Based on the experimental data, a stepwise logistic regression model was developed to predict the probability of successful fire spread. This procedure resulted in the selection of wind speed, slope percent, fuel loading, fuel moisture content, and relative humidity as the primary variables. It correctly classified 96% of 115 fires. Finally, a multidimensional numerical model for vegetation fire spread using a porous media sub-model was developed to simulate the laboratory fires. Results are used to analyze the internal heat transfer and combustion processes that determine fire spread success in shrub fuel bed.  相似文献   

7.
压力管嵌入式燃料部件内冷却剂管道间不存在横向交混,若燃料辐照肿胀或碎片进入冷却管道内,容易引发堵流事故,造成局部冷却条件恶化,使燃料烧毁。考虑到次临界能源包层流动路径长、方向弯曲等特点,针对入口堵流事故提出一种多尺度热工模拟方法,通过RELAP5程序给计算流体力学(CFD)软件提供边界条件,对核功率密度最高的燃料部件入口处第一排单根流道部分堵塞和全部堵塞工况进行数值模拟,分析事故条件下燃料热工安全特性。结果表明:第一排单根流道部分堵塞时燃料温度仍满足安全限值,而全部堵塞时峰值温度将超过燃料相变温度限值。  相似文献   

8.
本文设计搭建石英管反扩散层流燃烧实验系统,研究了不同雷诺数和燃料组分条件下反扩散火焰的温度场特性。实验表明,反扩散火焰中心某一高度存在燃料和中心空气快速混合区域,体现出一定的预混燃烧特性。随中心射流雷诺数增大,火焰底部冷核区增大,高温区位置沿轴线上移,但火焰最高温度点的水平高度先升高后降低。不同燃料组分下,反扩散火焰的整体温度有所变化,但火焰温度的分布特性基本相似。  相似文献   

9.
Simple surrogate formulations for gasoline are useful for modelling purposes and for comparing experimental results using a carefully designed fuel. Simple three-component surrogates based on primary reference fuels (PRF) and Toluene (TPRF) are frequently used to match the antiknock properties of actual gasoline fuels through the RON and MON. However, using PRF or TPRFs to test or to calibrate gasoline engines is still challenging, with the main difficulty being the capabilities of PRF fuels to match the physical properties of the road fuel such density, volatility (DVPE) and the distillation curve. To overcome such issues, an alternative to TPRF is presented in this work with a focus on premium fuel (RON98 EN228). This alternative consists of replacing some or all of isooctane by isopentane. In the event of total replacement, a three-component “THIP” (Toluene, Heptane, IsoPentane) surrogate fuel is produced. The physical and combustion properties of isopentane makes it easier to create surrogates that can match the DVPE, RON, MON and distillation characteristics of a real fuel. Furthermore, the use of isopentane allows the definition of a wider range of surrogate fuel compositions that can replicate the RON and MON of a given fuel. Surrogate formulations were developed at Shell Global Solutions that matched the RON, MON and selected physical properties of a reference premium gasoline (RPG). A Rapid Compression Machine (RCM) in PCFC was used to demonstrate that those surrogates can reproduce the essential autoignition characteristics of the selected RPG. Two mechanisms were used to predict RCM data and showed reasonable agreement, opening some perspective for further investigations. Finally, an engine test performed at Ferrari test facilities demonstrated that simple surrogates containing isopentane can be used to closely match the knock-limited combustion phasing of an RPG. In this paper, it is demonstrated such surrogates have advantages compared to TPRFs in being able to match the properties of a real fuel and that the surrogate approach is consistent with RCM data and engine results.  相似文献   

10.
将一种棕榈油提取物作为添加剂,加入汽油中以研究其对汽油机燃油经济性和排放品质的影响。针对市场上正使用的辛烷值为93#的高清洁汽油和乙醇汽油,通过发动机台架试验对加剂前后的汽油机性能指标进行了对比和分析.结果表明:加入此种添加剂后对各种汽油的燃油经济性有大幅改善作用,对乙醇汽油的效果尤甚。加剂后可以使乙醇汽油的燃油经济性与普通汽油完全一样。对于93#高清洁汽油,除了未燃碳氢(HC)略有上升外,其他排放物如氮氧化物 (Nox)、一氧化碳等有所减少, CO2排放有明显的改善。对于乙醇汽油,则HC和CO2略有上升。  相似文献   

11.
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not achievable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting dual beam FIB technology to nuclear fuels characterization.  相似文献   

12.
Experimental and numerical studies are carried out to construct reliable surrogates that can reproduce aspects of combustion of JP-8 and Jet-A. Surrogate fuels are defined as mixtures of few hydrocarbon compounds with combustion characteristics similar to those of commercial fuels. The combustion characteristics considered here are extinction and autoignition in laminar non premixed flows. The “reference” fuels used as components for the surrogates of jet fuels are n-decane, n-dodecane, methylcyclohexane, toluene, and o-xylene. Three surrogates are constructed by mixing these components in proportions to their chemical types found in jet fuels. Experiments are conducted in the counterflow system. The fuels tested are the components of the surrogates, the surrogates, and the jet fuels. A fuel stream made up of a mixture of fuel vapors and nitrogen is injected into a mixing layer from one duct of a counterflow burner. Air is injected from the other duct into the same mixing layer. The strain rate at extinction is measured as a function of the mass fraction of fuel in the fuel stream. The temperature of the air at autoignition is measured as a function of the strain rate at a fixed value of the mass fraction of fuel in the fuel stream. The measured values of the critical conditions of extinction and autoignition for the surrogates show that they are slightly more reactive than the jet fuels. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition for the reference fuels and for the surrogates are found to agree well with experimental data. Sensitivity analysis is used to highlight key elementary reactions that influence the critical conditions of autoignition of an alkane fuel and an aromatic fuel.  相似文献   

13.
粉体工业静电防护技术研究进展   总被引:2,自引:0,他引:2  
周本谋  刘尚合  范宝春 《物理》2004,33(10):759-764
粉体静电灾害涉及面广、危害大,开发合理的粉体静电防灾技术是国民经济发展过程中需要解决的热点问题之一.近年来,粉体静电测试研究方法、粉体静电起电与放电研究方法、粉体静电危险性评价方法、粉体静电危险性分级理论等研究工作取得了较好的研究成果.根据粉体静电现实危险性量化分析的结果而采取的粉体防静电灾害技术措施,为粉体工业生产提供了一定的安全保障.  相似文献   

14.
With the aim of utilizing JP-8 fuel for small scale portable power generation systems, catalytic combustion of JP-8 is studied. The surface ignition, extinction and autothermal combustion of JP-8, of a six-component surrogate fuel mixture, and the individual components of the surrogate fuel over a Pt/γ-Al2O3 catalyst are experimentally investigated in a packed bed flow reactor. The surrogate mixture exhibits similar ignition–extinction behavior and autothermal temperatures compared to JP-8 suggesting the possibility of using this surrogate mixture for detailed kinetics of catalytic combustion of JP-8. It is shown that JP-8 ignites at low temperatures in the presence of catalyst. Upon ignition, catalytic combustion of JP-8 and the surrogate mixture is self-sustained and robust combustion is observed under fuel lean as well as fuel rich conditions. It is shown that the ignition temperature of the hydrocarbon fuels increases with increasing equivalence ratio. Extinction is observed under fuel lean conditions, whereas sustained combustion was also observed for fuel rich conditions. The effect of dilution in the air flow on the catalytic ignition and autothermal temperatures of the fuel mixture is also investigated by adding helium to the air stream while keeping the flow rate and the equivalence ratio constant. The autothermal temperature decreases linearly as the amount of dilution in the flow is increased, whereas the ignition temperature shows no dependence on the dilution level under the range of our conditions, showing that ignition is dependent only on the type and relative concentration of the active species.  相似文献   

15.
Carbon nanotubes (CNTs) are classified among the most promising novel materials due to their exceptional physical properties. Still, optimal fabrication of carbon nanotubes involves a number of challenges. Whatever be the fabrication method, a process optimization can be evolved only on the basis of a good theoretical model to predict the parametric influences on the final product. The work reported here investigates the dependence of the deposition parameters on the controllable parameters for carbon nanotube growth during Chemical vapor deposition (CVD), through a chemical kinetic model. The theoretical model consisted of the design equations and the energy balance equations, based on the reaction kinetics, for the plug flow and the batch reactor, which simulate the CVD system. The numerical simulation code was developed in-house in a g++ environment. The results predicted the growth conditions for CNT: the deposition temperature, pressure and number of atoms, which were found to be influenced substantially by the initial controllable parameters namely the temperature, volumetric flow rate of the carbon precursor, and the reaction time. An experimental study was also conducted on a CVD system developed in the laboratory, to benchmark the computational results. The experimental results were found to agree well with the theoretical predictions obtained from the model.  相似文献   

16.
This numerical investigation is focused on determining the structures of blue whirls, recently found to occur in laboratory investigations of fire whirls when the circulation becomes sufficiently large to produce a vortex breakdown that drastically shortens the fire whirl and correspondingly reduces residence times, so that the yellow flames turn blue. The computations address axisymmetric configurations for round pools of liquid fuels flush with and at the center of a larger solid horizontal disc, at the outer edge of which vanes of adjustable angles cause the entrained air to enter with a controllable azimuthal component of velocity. The nondimensionlized conservation equations employed include realistic Lewis numbers with temperature-dependent transport coefficients and a one-step chemical-kinetic approximation that correctly reproduces laminar burning velocities. Buoyancy and radiant energy transport from the flames to the liquid surface are both taken into account, the latter being found to be essential for the blue whirl. Along with the vaporization-equilibrium and energy-conservation boundary conditions at the fuel surface, inflow boundary conditions are provided by a recently developed solution for the boundary-layer flow over the solid disc, while zero-gradient outflow conditions are applied above the whirl. Controlling nondimensional parameters, besides Reynolds, Damköhler, and Froude numbers, are a ratio of radiant to convective energy flux and a ratio of azimuthal to inward radial flow velocity in the boundary layer at the edge of the disc. The computed conditions for the onset of the blue whirl, as well as the computed structure of the whirl itself, bear close resemblance to what was found experimentally.  相似文献   

17.
A. Su 《实验传热》2013,26(2):97-109
Recently, the requirements for cellular phones, portable computers, and digital cameras have increased dramatically. A portable electric power supply with long duration and high performance is needed for these products. A proton exchange membrane fuel cell (PEMFC) can meet these requirements and becomes one of the best candidates for a portable power source. It is impossible to install an extra humidifier into small-scale portable electric products for PEMFC water management. This article presents a series of experiments to investigate the performance of a single PEMFC. The effects of different operating conditions on cell performance, including the temperature, pressure, and inlet fuel/oxidant flow rate, are discussed. The test results confirm the positive effect of these parameters on cell performance and power output. The interaction effect of temperature--flow rate is related to the cell humidity, and is important for cell performance. The dry-out problem for a PEMFC is also significantly revealed in the experiments for higher cell temperature and flow rate. Current experimental results can provide useful information for investigating the cell performance and its operating effects under dry fuel/oxidant flow conditions and as a benchmark for simulation work in future studies.  相似文献   

18.
H. Gül 《实验传热》2013,26(1):73-84

An experimental investigation was made to study heat transfer in a pipe which is oscillated about an axis that is parallel to, but offset from, the pipe axis. Air was used as working fluid. The experimental setup was designed so as to provide oscillating motion of a test pipe. The measurement systems were installed on the oscillating section. For both steady and oscillating flows, the bulk air temperature and wall temperature, pressure drop, and frequency were measured. The parameters for this study were chosen as Reynolds number from 5,000 to 20,000 and oscillating frequencies from 10 to 20 Hz. The variations of Nusselt number versus these parameters were determined and presented graphically. Heat transfer enhancement of 42% was achieved at constant pumping power for oscillatory flow.  相似文献   

19.
提出了一种石墨化炭黑过滤吸附前处理抑制轻质燃油拉曼光谱荧光背景干扰的方法和一种改进的系统聚类分析算法,实现了39个样品的种类快速识别,即能自动将样品识别为0#车用柴油、0#普通柴油、97#车用汽油、93#车用汽油、90#车用汽油和3#喷气燃料等6种类型。过滤吸附处理方法是用定制的50 mg石墨化炭黑过滤吸附0.75 mL油样,然后对其进行拉曼光谱数据采集。试验结果证明:石墨化炭黑过滤吸附处理对无荧光背景干扰的3#喷气燃料和车用汽油样品拉曼光谱特征无明显影响,且能够有效抑制车用汽油和车用柴油样品的拉曼弱荧光背景干扰,以及车用汽油和普通柴油的强荧光背景干扰。改进的有监督系统聚类分析算法将普鲁克距离作为系统聚类分析中样本间相似度的评价方法;并将经典的系统聚类分析视为标准校正样品集的“建模”过程,通过计算未知样品与各类属中心向量之间的普鲁克距离,依据距离最小原则判断未知样品的类属。通过对39个具有不同拉曼荧光背景干扰特征油样的石墨化炭黑前处理和“留一法”交互验证分类识别,分析结果证明:石墨化炭黑过滤吸附前处理抑制拉曼光谱荧光背景的方法能够有效提取轻质燃油的拉曼光谱特征并应用于定性种类识别。  相似文献   

20.
Experimental and numerical studies are carried out to construct surrogates that can reproduce selected aspects of combustion of gasoline in non premixed flows. Experiments are carried out employing the counterflow configuration. Critical conditions of extinction and autoignition are measured. The fuels tested are n-heptane, iso-octane, methylcyclohexane, toluene, three surrogates made up of these components, called surrogate A, surrogate B, and surrogate C, two commercial gasoline with octane numbers (ON) of 87 and 91, and two mixtures of the primary reference fuels, n-heptane and iso-octane, called PRF 87 and PRF 91. The combustion characteristics of the commercial gasolines, ON 87 and ON 91, are found to be nearly the same. Surrogate A and surrogate C are found to reproduce critical conditions of extinction and autoignition of gasoline: surrogate C is slightly better than surrogate A. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition of the components of the surrogates agree well with experimental data. The octane numbers of the mixtures PRF 87 and PRF 91 are the same as those for the gasoline tested here. Experimental and numerical studies show that the critical conditions of extinction and autoignition for these fuels are not the same as those for gasoline. This confirms the need to include at least aromatic compounds in the surrogate mixtures. The present study shows that the semi-detailed chemical-kinetic mechanism developed here is able to predict key aspects of combustion of gasoline in non premixed flows, although further kinetic work is needed to improve the combustion chemistry of aromatic species, in particular toluene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号