首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Students’ experiences with proving in schools often lead them to see proof as a static product rather than a negotiated process that can help students justify and make sense of mathematical ideas. We investigated how authority manifested in whole-class proving episodes within Ms. Finley’s high school geometry classroom. We designed a coding scheme that helped us identify the proving actions and interactions that occurred during whole-class proving and how Ms. Finley and her students contributed to those processes. By considering the authority over proof initiation, proof construction, and proof validation, the episodes illustrate how whole-class proving interactions might relate to students’ potential development (or maintenance) of authoritative proof schemes. In particular, the authority of the teacher and textbook limited students’ opportunities to engage collectively in proving and sometimes allowed invalid arguments to be accepted in the public discourse. We offer suggestions for research and practice with respect to authority and proof instruction.  相似文献   

2.
In this paper we consider proving to be the activity in search for a proof, whereby proof is the final product of this activity that meets certain criteria. Although there has been considerable research attention on the functions of proof (e.g., explanation), there has been less explicit attention in the literature on those same functions arising in the proving process. Our aim is to identify conditions for proving by mathematical induction to be explanatory for the prover. To identify such conditions, we analyze videos of undergraduate mathematics students working on specially designed problems. Specifically, we examine the role played by: the problem formulation, students’ experience with the utility of examples in proving, and students’ ability to recognize and apply mathematical induction as an appropriate method in their explorations. We conclude that particular combinations of these aspects make it more likely that proving by induction will be explanatory for the prover.  相似文献   

3.
In this paper, we propose an enriched and extended application of Harel and Sowder’s proof schemes taxonomy that can be used as a diagnostic tool for characterizing secondary students’ emergent learning of proof and proving. We illustrate this application in the analysis of data collected from 85 Year 9 (age 14–15) secondary students. We capture these students’ first encounters with proof and proving in an educational context (mixed ability, state schools in Greece) where mathematical proof is explicitly present in algebra and geometry lessons and where proving skills are typically expected, and rewarded, in key national examinations. We analyze student written responses to six questions, soon after the students had been introduced to proof and we identify evidence of six of the seven proof schemes proposed by Harel and Sowder as well as a further eight combinations of the six. We observed these combinations often within the response of the same student and to the same item. Here, we illustrate the eight combinations and we claim that a dynamic use of the proof schemes taxonomy that encompasses sole and combined proof schemes is a potent theoretical and pedagogical tool for mapping students’ multi-faceted and evolving competence in, and appreciation for, proof and proving.  相似文献   

4.
Proving and refuting mathematical claims constitute a significant element in the development of deductive thinking. These issues are mainly studied during geometry lessons and very little (if at all) in lessons of other mathematical disciplines. This study deals with high school students’ perceptions of proofs in the geometry. The study explores whether students know when to use a deductive proof and when an example is sufficient for proving or refuting geometrical claims. The findings indicate that in cases of simple claims, the students corroborate them by using a deductive proof. However, when the claim is more complex, the students tend to present both a proof and an example. Moreover, they are unsure whether using an example can constitute a method for proving a mathematical claim, believing that in mathematics everything must be proven. They believe that examples are used merely for illustration purposes rather than as a means of convincing. The research conclusions support the need for deepening and developing the students’ distinction between cases where examples are insufficient and cases where an example is sufficient for proving a claim.  相似文献   

5.
Proof validation is important in school mathematics because it can provide a basis upon which to critique mathematical arguments. While there has been some previous research on proof validation, the need for studies with school students is pressing. For this paper, we focus on proof validation and modification during secondary school geometry. For that purpose, we employ Lakatos’ notion of local counterexample that rejects a specific step in a proof. By using Toulmin’s framework to analyze data from a task-based questionnaire completed by 32 ninth-grade students in a class in Japan, we identify what attempts the students made in producing local counterexamples to their proofs and modifying their proofs to deal with local counterexamples. We found that student difficulties related to producing diagrams that satisfied the condition of the set proof problem and to generating acceptable warrants for claims. The classroom use of tasks that entail student discovery of local counterexamples may help to improve students’ learning of proof and proving.  相似文献   

6.
7.
The National Council of Teachers of Mathematics calls for an increased emphasis on proof and reasoning in school mathematics curricula. Given such an emphasis, mathematics teachers must be prepared to structure curricular experiences so that students develop an appreciation for both the value of proof and for those strategies that will assist them in developing proving skills. Such an outcome is more likely when the teacher feels secure in his/her own understanding of the concept of “mathematical proof” and understands the ways in which students progress as they take on increasingly more complex mathematical justifications. In this article, a model of mathematical proof, based on Balacheff's Taxonomy of Mathematical Proof, outlining the levels through which students might progress as they develop proving skills is discussed. Specifically, examples of the various ways in which students operating at different levels of skill sophistication could approach three different mathematical proof tasks are presented. By considering proofs under this model, teachers are apt to gain a better understanding of each student's entry skill level and so effectively guide him/her toward successively more sophisticated skill development.  相似文献   

8.
Students learn norms of proving by observing teachers generating proofs, engaging in proving, and generalizing features of proofs deemed convincing by an authority, such as a textbook. Students at all grade levels have difficulties generating valid proof; however, little research exists on students' understandings about what makes a mathematical argument convincing prior to more formal instruction in methods of proof. This study investigated middle‐school students' (ages 12–14) evaluations of arguments for a statement in number theory. Students evaluated both an empirical and a general argument in an interview setting. The results show that students tend to prefer empirical arguments because examples enhance an argument's power to show that the statement is true. However, interview responses also reveal that a significant number of students find arguments to be most convincing when examples are supported with an explanation that “tells why” the statement is true. The analysis also examined the alignment of students' reasons for choosing arguments as more convincing along with the strategies they employ to make arguments more convincing. Overall, the findings show middle‐school students' conceptions about what makes arguments convincing are more sophisticated than their performance in generating arguments suggests.  相似文献   

9.
Mathematical creativity has been emphasized as an essential part of mathematics, yet little research has been done to study the effects of fostering creativity in the tertiary mathematics classroom. In this paper, we explore how fostering mathematical creativity may impact student self-efficacy for proving. For this, we developed new methods to study evidence of instructor use of Sriraman’s (2005) five principles for fostering mathematical creativity and changes in student self-efficacy via Bandura's (1997) four sources of self-efficacy. This revealed associations between four of the five principles and changes in student self-efficacy for proving, along with two instances where the combined use of principles may have provided students greater opportunities for building self-efficacy for proving. The implications of these results for teaching and future research are discussed.  相似文献   

10.
Conceptual blending describes how humans condense information, combining it in novel ways. The blending process may create global insight or new detailed connections, but it may also result in a loss of information, causing confusion. In this paper, we describe the proof writing process of a group of four students in a university geometry course proving a statement of the form conditional implies conditional, i.e., (p  q)  (r  s). We use blending theory to provide insight into three diverse questions relevant for proof writing: (1) Where do key ideas for proofs come from?, (2) How do students structure their proofs and combine those structures with their more intuitive ideas?, and (3) How are students reasoning when they fail to keep track of the implication structure of the statements that they are using? We also use blending theory to describe the evolution of the students’ proof writing process through four episodes each described by a primary blend.  相似文献   

11.
History and research on proof by contradiction suggests proof by contradiction is difficult for students in a number of ways. Students’ comprehension of already-written proofs by contradiction is one such aspect that has received relatively little attention. Applying the cognitive lens of Action-Process-Object-Schema (APOS) Theory to proof by contradiction, we constructed and tested a cognitive model that describes how a student might construct the concept ‘proof by contradiction’ in an introduction to proof course. Data for this study was collected from students in a series of five teaching interventions focused on proof by contradiction. This paper will report on two participants as case studies to illustrate that our cognitive trajectory for proof by contradiction is a useful model for describing how students may come to understand the proof method.  相似文献   

12.
13.
We examined the proof-writing behaviors of six highly successful mathematics majors on novel proving tasks in calculus. We found two approaches that these students used to write proofs, which we termed the targeted strategy and the shotgun strategy. When using a targeted strategy students would develop a strong understanding of the statement they were proving, choose a plan based on this understanding, develop a graphical argument for why the statement is true, and formalize this graphical argument into a proof. When using a shotgun strategy, students would begin trying different proof plans immediately after reading the statement and would abandon a plan at the first sign of difficulty. The identification of these two strategies adds to the literature on proving by informing how elements of existing problem-solving models interrelate.  相似文献   

14.
This article describes a study of how students construct relations of authority during dyadic mathematical work and how teachers’ interactions with students during small group conferences affect subsequent student dynamics. Drawing on the influence framework (Engle, Langer-Osuna, & McKinney de Royston, 2014), I examined interactions when students appropriated their peers’ ideas during collaborative mathematical problem solving and noted that each moment tended to follow particular interactions around authority. Notably, social and intellectual forms of authority became linked in ways that were directly related to how students’ ideas and behaviors were evaluated by the teacher. I close by discussing how the study of authority and influence offers fertile analytic ground to generate new understandings about collaborative student work in mathematics classrooms.  相似文献   

15.
Proof construction and proof validation are two situations of high importance in mathematical teaching and research. While both situations have usually been studied separately, the current study focuses on possible intersections. Based on research on acceptance criteria and validation strategies, 11 undergraduates’ proof construction processes are investigated in terms of the effective and non-effective validation activities that occur. By conducting a qualitative content analysis with subsequent type construction, we identified six different validation activities, namely reviewing, rating, correcting errors, reassuring, expressing doubts, and improving. Although some of these activities tend to be associated with successful or unsuccessful proving processes, their effectiveness depends primarily on their specific implementation. For example, reviewing is effective when accompanied by a knowledge-generating approach and based on structure- or meaning-oriented criteria to provide deeper understanding. Thus, the results suggest that difficulties in proof construction could be partly attributed to inadequate validation strategies or their poor implementation.  相似文献   

16.
ABSTRACT

In this study, we examined a mathematician and one of his students’ teaching journals and thought processes concurrently as the class was moving towards the proof of the Fundamental Theorem of Galois Theory. We employed Tall's framework of three worlds of mathematical thinking as well as Piaget's notion of accommodation to theoretically study the narratives. This paper reveals the pedagogical challenges of proving an elegant theory as the events unfolded. Although the mathematician was conscious of the students’ abilities as he carefully made the path accessible, the disparity between the mind of the mathematician and the student became apparent.  相似文献   

17.
This study investigates the influence of inquiry-oriented real analysis instruction on students’ conceptions of the situation of mathematical defining. I assess the claim that inquiry-oriented instruction helps acculturate students into advanced mathematical practice. The instruction observed was “inquiry-oriented” in the sense that they treated definitions as under construction. The professor invited students to create and assess mathematical definitions and students sometimes articulated key mathematical content before the instructor. I characterize students’ conceptions of the defining situation as their (1) frames for the classroom activity, (2) perceived role in that activity, and (3) values for classroom defining. I identify four archetypal categories of students’ conceptions. All participants in the study valued classroom defining because it helped them understand and recall definitions. However, students in only two categories showed strong acculturation to mathematical practice, which I measure by the students’ expression of meta-mathematical values for defining or by their bearing mathematical authority.  相似文献   

18.
This paper discusses the process of proving from a novel theoretical perspective, imported from cognitive psychology research. This perspective highlights the role of hypothetical thinking, mental representations and working memory capacity in proving, in particular the effortful mechanism of cognitive decoupling: problem solvers need to form in their working memory two closely related models of the problem situation – the so-called primary and secondary representations – and to keep the two models decoupled, that is, keep the first fixed while performing various transformations on the second, while constantly struggling to protect the primary representation from being “contaminated” by the secondary one. We first illustrate the framework by analyzing a common scenario of introducing complex numbers to college-level students. The main part of the paper consists of re-analyzing, from the perspective of cognitive decoupling, previously published data of students searching for a non-trivial proof of a theorem in geometry. We suggest alternative (or additional) explanations for some well-documented phenomena, such as the appearance of cycles in repeated proving attempts, and the use of multiple drawings.  相似文献   

19.
We present a model for describing the growth of students’ understandings when reading a proof. The model is composed of two main paths. One is focused on becoming aware of the deductive structure of the proof, in other words, understanding the proof at a semantic level. Generalization, abstraction, and formalization are the most important transitions in this path. The other path focuses on the surface-level form of the proof, and the use of symbolic representations. At the end of this path, students understand how and why symbolic computations formally establish a claim, at a syntactic level. We make distinctions between states in the model and illustrate them with examples from early secondary students’ mathematical activity. We then apply the model to one student’s developing understanding in order to show how the model works in practice. We close with some suggestions for further research.  相似文献   

20.
Proof and proving are important components of school mathematics and have multiple functions in mathematical practice. Among these functions of proof, this paper focuses on the discovery function that refers to invention of a new statement or conjecture by reflecting on or utilizing a constructed proof. Based on two cases in which eighth and ninth graders engaged in proofs and refutations, we demonstrate that facing a counterexample of a primitive statement can become a starting point of students’ activity for discovery, and that a proof of the primitive statement can function as a useful tool for inventing a new conjecture that holds for the counterexample. An implication for developing tasks by which students can experience this discovery function is mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号