首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Molecular complexes formed by different forms of carbocations (carbenium ions) and carboanions with water, acetylene, and methane molecules have been calculated by the MP2/6-311++G(2df,2pd) method. In complexes with water where the carbon atom of the carbocation (carboanion) acts as the proton donor (acceptor), the energies of the C-H?O and O-H?C hydrogen bonds turn out to be approximately the same being 13–20 kcal/mol for carbocation (carboanion) species differing in the valence state of the carbon atom. Two types of C-H?C interactions have been revealed depending on the charge at the bridging hydrogen atom, which is determined by the hybridization of the donor carbon atom. The C-H?C interaction energy in molecular complexes with the positively charged hydrogen atom (carboanion complexes with acetylene) is an order of magnitude higher than in the complexes where the bridging hydrogen atom has an excess of electron density (carbocation complexes with methane). In all the complexes under consideration, the covalent C-H bond involved in interaction is elongated, and the negative charge is transferred from the acceptor to the donor.  相似文献   

2.
The synthesis and X-ray structural characterization of two silver(I) coordination polymers, [Ag2(bpp)2(Phdac)]·5H2O (1) and [Ag2(bpp)(HSSal)] (2), are reported, where bpp = 4,4′-trimethylene dipyridine, H2Phdac = 1,4-phenylenediacetic acid, and H3SSal = 5-sulfosalicylic acid. X-ray crystallography reveals that the structures are stabilized through hydrogen bonding interactions. The C–H?π and metal?π interactions of aromatic molecules play a crucial role in building a layered framework. Intricate combinations of the weak non-covalent interactions have been analyzed to explore cooperativity and competitiveness in the solid-state structures.  相似文献   

3.
Ab initio calculations were used to analyze the interactions between thiohypohalous acids (HSX; X = F, Cl, Br, I) and methylphosphine derivatives (PH n Me3?n , n = 0–3) at the MP2/aug-cc-pVDZ level of theory. Interaction of HSX with PH n Me3?n leads to both hydrogen bond (HSX–PH n Me3?n –HB) as well as halogen bond (HSX–PH n Me3?n –XB) complexes. Stabilities of both HB and XB complexes increase with basicity of the phosphines. However, HB complexes of a phosphine molecule with different HSX have the same order of stabilities, but XB complexes of heavier thiohypohalous acids are more stable. Electron densities of complexes were characterized with the atoms in molecules methodology. The charge transfer within dimers was analyzed by means of natural bond orbitals.  相似文献   

4.
Quantum chemistry calculations at the density functional theory (DFT) (B3LYP), MP2, QCISD, QCISD(T), and CCSD(T) levels in conjunction with 6-311++G(2d,2p) and 6-311++G(2df,2p) basis sets have been performed to explore the binding energies of open-shell hydrogen bonded complexes formed between the HOCO radical (both cis-HOCO and trans-HOCO) and trans-HCOOH (formic acid), H(2)SO(4) (sulfuric acid), and cis-cis-H(2)CO(3) (carbonic acid). Calculations at the CCSD(T)∕6-311++G(2df,2p) level predict that these open-shell complexes have relatively large binding energies ranging between 9.4 to 13.5 kcal∕mol and that cis-HOCO (cH) binds more strongly compared to trans-HOCO in these complexes. The zero-point-energy-corrected binding strengths of the cH?Acid complexes are comparable to that of the formic acid homodimer complex (~13-14 kcal∕mol). Infrared fundamental frequencies and intensities of the complexes are computed within the harmonic approximation. Infrared spectroscopy is suggested as a potential useful tool for detection of these HOCO?Acid complexes in the laboratory as well as in various planetary atmospheres since complex formation is found to induce large frequency shifts and intensity enhancement of the H-bonded OH stretching fundamental relative to that of the corresponding parent monomers. Finally, the ability of an acid molecule such as formic acid to catalyze the inter-conversion between the cis- and trans-HOCO isomers in the gas phase is also discussed.  相似文献   

5.
A comparative assessment of the 48-h acute toxicity of aqueous nanoparticles synthesized using the same methodology, including Au, Ag, and Ag–Au bimetallic nanoparticles, was conducted to determine their ecological effect in freshwater environments through the use of Daphnia magna, using their mortality as a toxicological endpoint. D. magna are one of the standard organisms used for ecotoxicity studies due to their sensitivity to chemical toxicants. Particle suspensions used in toxicity testing were well-characterized through a combination of absorbance measurements, atomic force or electron microscopy, flame atomic absorption spectrometry, and dynamic light scattering to determine composition, aggregation state, and particle size. The toxicity of all nanoparticles tested was found to be dose and composition dependent. The concentration of Au nanoparticles that killed 50% of the test organisms (LC50) ranged from 65–75 mg/L. In addition, three different sized Ag nanoparticles (diameters = 36, 52, and 66 nm) were studied to analyze the toxicological effects of particle size on D. magna; however, it was found that toxicity was not a function of size and ranged from 3–4 μg/L for all three sets of Ag nanoparticles tested. This was possibly due to the large degree of aggregation when these nanoparticles were suspended in standard synthetic freshwater. Moreover, the LC50 values for Ag–Au bimetallic nanoparticles were found to be between that of Ag and Au but much closer to that of Ag. The bimetallic particles containing 80% Ag and 20% Au were found to have a significantly lower toxicity to Daphnia (LC50 of 15 μg/L) compared to Ag nanoparticles, while the toxicity of the nanoparticles containing 20% Ag and 80% Au was greater than expected at 12 μg/L. The comparison results confirm that Ag nanoparticles were much more toxic than Au nanoparticles, and that the introduction of gold into silver nanoparticles may lower their environmental impact by lowering the amount of Ag which is bioavailable.  相似文献   

6.
C–H?N and C–H?S hydrogen bonds were analyzed in complexes where acetylene, ethylene, methane and their derivatives are proton donors while ammonia and hydrogen sulfide are proton acceptors. Ab initio calculations were performed to analyze those interactions; MP2 method was applied and the following basis sets were used: 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ. The results showed that hydrogen bonds for complexes with ammonia are systematically stronger than such interactions in complexes with hydrogen sulfide. If the fluorine substituted hydrocarbons are considered then F-substituents enhance the strength of hydrogen bonding. For a few complexes, mainly those where carbon atom in proton donating C–H bond possesses sp3 hybridization, the blue-shifting hydrogen bonds were detected. Additionally, Quantum Theory of ‘Atoms in Molecules’ and Natural Bond Orbitals method were applied to analyze H-bond interactions.  相似文献   

7.
Morphologically and dimensionally controlled growth of Ag nanocrystals has long been plagued by surfactants or capping agents that complicate downstream applications, unstable Ag salts that impaired the reproducibility, and multistep seed injection that is troublesome and time-consuming. Here, we report a one-pot electro-chemical method to fast (∼2 min) produce Ag nanoparticles from commercial bulk Ag materials in a nitric acid solution, eliminating any need for surfactants or capping agents. Their size can be easily manipulated in an unprecedentedly wide range from 35 to 660 nm. Furthermore, the Ag nanoparticles are directly grown on the Ag substrate, highly desirable for promising applications such as catalysis and plasmonics. The mechanistic studies reveal that the concentration of Ag+ in the diffusion layer nearby the surface, controlled by the magnitude and duration of voltage, is critical in governing the nanoparticle formation (<1.3 mM) and its dimensional adjustability.  相似文献   

8.
Structures and interaction energies of complexes valence isoelectronic to the important CO?H(2)O complex, namely SiO?H(2)O and CS?H(2)O, have been studied for the first time using high-level ab initio methods. Although CO, SiO, and CS are valence isoelectronic, the structures of their complexes with water differ significantly, owing partially to their widely varied dipole moments. The predicted dissociation energies D(0) are 1.8 (CO?H(2)O), 2.7 (CS?H(2)O), and 4.9 (SiO?H(2)O) kcal∕mol. The implications of these results have been examined in light of the dipole moments of the separate moieties and current concepts of hydrogen bonding. It is hoped that the present results will spark additional interest in these complexes and in the general non-covalent paradigms they represent.  相似文献   

9.
Cu–Ag nanoparticles have been successfully synthesized by one-pot solvothermal treatment of a mixture of AgNO3 and Cu(OAc)2·H2O in ethylene glycol solution at 180 °C for 10 h. The samples were characterized by UV–visible absorption, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that Cu–Ag nanoparticles and a small amount of phase-separated Cu–Ag alloy nanoparticles with an average diameter of 100 ± 30 nm were synthesized by the solvothermal treatment procedure. The mechanism of formation is discussed.  相似文献   

10.
The work deals with the establishment of the dependence of the vibrational frequencies of strong O–H?O and N–H?O hydrogen bonds for the diagnosing the bonds themselves. To this end, the Raman spectra of a large number of different normal and deutero-substituted crystals characterized by the presence of strong O–H?O and N–H?O bonds are measured and the quantum chemical calculation is performed for one of these compounds. The dependence of the O–H stretching frequency on the O?O distance is constructed differing from that previously known for short O?O contacts. The mechanisms of significant broadening of the O–H vibration band in strong O–H?O hydrogen bonds are considered. Different dependences of the N–H vibrational frequencies in N–H?O bonds are reported and the causes of this diversity are discussed.  相似文献   

11.
A 2D polymer with Ag?C interactions, [Ag(μ5-TS)]n (1) [TS = toluene-4-sulfonate], has been synthesized and characterized and its structure was determined by X-ray crystallography. In addition to coordination of the O atoms of TS, the Ag atoms also form weak η1 Ag?C interactions. The thermal stability of 1 was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The ligand and compound 1 are luminescent in DMF, with emission maxima at 358 and 335, respectively. Solution studies of complex 1 were done in DMF and in CH3CN.  相似文献   

12.
The IR spectra of a number of imidazole derivatives were studied in the solid state at room and liquid nitrogen temperatures. The bands ascribed to stretching and out-of-plane deformation vibrations of NH groups involved in strong NH⋯N hydrogen bonds were analysed. The energy of this bond reflected in the position of the ν(NH⋯N) band changes over a broad range so that it was possible to investigate band shaping due to the overlap with the overtone band of the γ(NH⋯N) mode. The correlation between the γ(NH⋯N) and ν(NH⋯) frequencies shows that the γ(NH⋯N) value for strong NH⋯N bridges only slightly depends on ν(NH⋯N).  相似文献   

13.
First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au–Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au–Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano-texture were considered by numerical FDTD simulations of light intensity distribution for the nano-textured Au, Ag, and Au–Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20, Ag20, and Au10Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans-conformation having close energy difference to cis-conformation. Binding to pure Au cluster is stronger than to pure Ag or Au–Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm–1. This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.  相似文献   

14.
15.
The supramolecular assemblies of three new phosphoric triamides, {(C6H5CH2)(CH3)N}2(4-CH3-C6H4C(O)NH)P(O) (1), {(C6H11)(CH3)N}2(4-CH3-C6H4C(O)NH)P(O) (2) and {(C2H5)2N}2(4-CH3-C6H4C(O)NH)P(O) (3) were studied by single crystal X-ray diffraction as well as by Hirshfeld surface analysis. It was found that a synergistic cooperation of NH?O and CH?O hydrogen bonds occurs in all three structures, but forming unique supramolecular architectures individually. Along with the presence of centrosymmetric dimers in 1, 2 and 3, based on a classical NH?O hydrogen bond, the presence of weak CH?O interactions play an additional and vital role in crystal architecture and construction of the final assemblies, collectively identified as a centrosymmetric dimer (0D), a 1-D array and a 3-D network, respectively. These differences in superstructures are related to the effect of aromatic, bulk and flexible groups used in the molecules designed, with a similar C(O)NHP(O) backbone. The NH?O contacts in 1, 2 and 3 are of the “resonance-assisted hydrogen bond” types and also the anti-cooperativity effect can be considered in the multi-acceptor sites P═O in 1 and 2 and C═O in 3. All three compounds were further studied by 1D NMR experiments, 2D NMR techniques (HMQC and HMBC (H–C correlation)), high resolution ESI–MS, EI–MS spectrometry and IR spectroscopy methods.  相似文献   

16.
Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2 binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug-cc-pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug-cc-pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug-cc-pwCVDZ-PP pseudopotential. 27 HOX⋯SO2 complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2 complexes in this study ranged from 1.35 to 3.81 kcal mol−1. The single-interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol−1, while the single-interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol−1, indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2 which may guide further research of related systems.  相似文献   

17.
《Comptes Rendus Chimie》2016,19(8):995-1002
In this paper, a theoretical study of the molecular properties of NaH⋯2(HF) and NaH⋯4(HF) complexes is reported. Based on MP2/6-311++G(d,p) calculations, the dihydrogen bonds (H⋯H), hydrogen bonds (F⋯H) and halogen-hydride bonds (F⋯Na) of these intermolecular systems were fully characterized. The characterization involved the following procedures: the examination of structural parameters, analysis of vibration modes such as frequencies shifted to red or blue in the infrared spectrum, modeling of the electronic topology, quantification of the cooperative energy followed by charge transfer and, finally, natural bond orbital analysis. The results show short intermolecular distances with high electronic density, while the stretch frequencies of the proton donors and acceptors are unusually shifted, and some values reach 1000 cm−1. When all subunits of the complexes are taken into account, in this case the NaH and HF molecules, the high value for the strength of the H⋯H dihydrogen bond in NaH⋯2(HF) suggests the formation of an additional subpart, i.e., the H2 molecule.  相似文献   

18.
The formation of Ag–Au, Cu–Au, and Ag–Cu bimetallic particles on the surface of highly oriented pyrolytic graphite was studied by X-ray photoelectron spectroscopy. Samples with the core–shell structure of particles were prepared by sequential thermal vacuum deposition. The thermal stability of the samples was studied over a wide range of temperatures (25-400°C) under ultrahigh-vacuum conditions. The heating of the samples to ~250°C leads to the formation of bimetallic alloy particles with a relatively uniform distribution of metals in the bulk. The thermal stability of the samples with respect to sintering depends on the nature of the supported metals. Thus, the Ag–Au particles exhibited the highest thermal resistance (~350°C) under ultrahigh-vacuum conditions, whereas the Ag–Cu particles agglomerated even at ~250°C.  相似文献   

19.
添加Ag或Ag,Ni的V2O5表面氧性质及催化性能研究   总被引:4,自引:1,他引:4  
用TPD-MS及甲苯选择氧化活性测定等方法研究了V2O5和添加Ag或Ag,Ni的3种样品的表面氧和晶格氧的热脱附性能及催化活性。结果表明,在V2O5中加入Ng或Ag,Ni后,样品表面上的O^-和O^2-氧物种的脱附活化能明显降低。添加Ag,Ni样品表面氧的脱附活化能最低,而苯甲醛生成的选择性最高,在V2O5和含有Ag,Ni的样品中,温度为968和734℃时,均依次出现以晶格氧(O^2-)脱附为主的  相似文献   

20.
All quadratic, cubic and quartic force constants associated with high and low vibrational modes of the H3N⋯HF hydrogen-bonded and H3N⋯LiF lithium-bonded complexes have been calculated employing the Møller—Plesset perturbation theory to the second order (MP2) with the 4-31G** basis set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号