首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Chemical physics letters》1985,121(6):475-478
Using a large, balanced one-electron basis set, fully optimized reaction space (FORS) calculations to optimize the orbitals and to estimate the internal correlation energy, multi-reference configuration interaction calculations including all single and double excitations out of the FORS reference space to estimate a fraction of the external correlation energy, and the method of scaled external correlation (SEC), we calculate the interaction energy of F with H2 in the vicinity of the saddle point for the reaction F + H2 → HF + H. Our calculated barrier height, 1.6 kcal/mol, is considerably lower than values obtained in recent ab initio calculations, and the saddle point geometry is about 0.3 a0 looser. This indicates that the part of the external correlation energy omitted from MR CISD calculations because of the incompleteness of the one-electron basis set and the truncation of the CI expansion, as estimated by the SEC method, has a significant effect on both the saddle point energy and its geometry.  相似文献   

3.
Exact quantum mechanical calculation of the reaction probability for the collinear H + H2 reaction on a Porter-Karplus potential energy surface are carried out by the finite-difference boundary value method at 6 energes in the threshold region and compared to close coupling, distorted wave, classical S matrix, transition state theory, and vibrational adiabatic calculations.  相似文献   

4.
We present a hierarchical construction scheme for accurate ab initio potential energy surface generation. The scheme is based on the observation that when molecular configuration changes, the variation in the potential energy difference between different ab initio methods is much smaller than the variation for potential energy itself. This means that it is easier to numerically represent energy difference to achieve a desired accuracy. Because the computational cost for ab initio calculations increases very rapidly with the accuracy, one can gain substantial saving in computational time by constructing a high accurate potential energy surface as a sum of a low accurate surface based on extensive ab initio data points and an energy difference surface for high and low accuracy ab initio methods based on much fewer data points. The new scheme was applied to construct an accurate ground potential energy surface for the FH(2) system using the coupled-cluster method and a very large basis set. The constructed potential energy surface is found to be more accurate on describing the resonance states in the FH(2) and FHD systems than the existing surfaces.  相似文献   

5.
An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H2+C2H-->H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju et al., Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.  相似文献   

6.
Calculations for the cumulative reaction probability N(E) (for J=0) and the thermal rate constant k(T) of the H+CH(4)-->H(2)+CH(3) reaction are presented. Accurate electronic structure calculations and a converged Shepard-interpolation approach are used to construct a potential energy surface which is specifically designed to allow the precise calculation of k(T) and N(E). Accurate quantum dynamics calculations employing flux correlation functions and multiconfigurational time-dependent Hartree wave packet propagation compute N(E) and k(T) based on this potential energy surface. The present work describes in detail the various convergence test performed to investigate the accuracy of the calculations at each step. These tests demonstrate the predictive power of the present calculations. In addition, approximate approaches for reaction rate calculations are discussed. A quite accurate approximation can be obtained from a potential energy surface which includes only interpolation points on the minimum energy path.  相似文献   

7.
Potential energy surface for the reaction OH+CO-->H+CO2 has been calculated using the complete active space self-consistent-field and multireference configuration interaction methods with the correlation consistent triple-, quadruple-, and quintuple-zeta basis sets. A specific- reaction-parameters density functional theory has been suggested, in which the B3LYP functional is reoptimized to give the highly accurate potential energy surface with less computational efforts.  相似文献   

8.
Preliminary results of ab initio unrestricted Hartree-Fock calculations for the potential energy surface for the reaction N+ + H2 → NH+ + H are reported. For the collinear approach of N+ to H2, the 3Σ? surface has no activation barrier and has a shallow well (ca. 1 eV). For perpendicular approach (C2v symmetry) the 3B2 state is of high energy, the 3A2 state has a shallow well but as the bond angle increases the 3B1 state decreases in energy to become the state of lowest energy. Neither the collinear nor the perpendicular approaches give adiabatic pathways to the deep potential well of 3B1 (HNH)+.  相似文献   

9.
This work presents a new ground state potential energy surface (PES) for CH. The potential is tested using quasi classical trajectory (QCT) and quantum reactive scattering methods for the H + CH(+) reaction. Cross sections and rate coefficients for all reaction channels up to 300 K are calculated. The abstraction rate coefficients follow the expected slightly decreasing behaviour above 90 K, but have a positive gradient with lower temperatures. The inelastic collision and exchange reaction rate constants are increasing monotonically with temperature. The rate coefficients of the exchange reaction differ significantly between QCT and quantum reactive scattering, due to intrinsic shortcomings of the QCT final state distributions.  相似文献   

10.
In the present paper, kinetic isotope effects of the title reaction are studied with canonical variational transition state theory on the modified Wang Bowman (MWB) potential energy surface (PES) (Chem Phys Lett 2005, 409, 249) and the ab initio calculations at the quadratic configuration interaction (QCISD (T, full))/aug‐cc‐pVTZ//QCISD (full)/cc‐pVTZ level. The calculated rate constants for the isotopic variants of this title reaction on the MWB PES have good agreement with those of the present ab initio calculations over the temperature range of 20–5000 K for the forward reactions and 800–5000 K for the reverse reactions, respectively. In particular, the forward rate constants for the title reaction and its isotopically substituted reactions have negative temperature dependences at about 40 K. Rate expressions are presented for all the studied reactions. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 289–298, 2010  相似文献   

11.
Two analytical representations for the potential energy surface of the F(2) dimer were constructed on the basis of ab initio calculations up to the fourth-order of M?ller-Plesset (MP) perturbation theory. The best estimate of the complete basis set limit of interaction energy was derived for analysis of basis set incompleteness errors. At the MP4/aug-cc-pVTZ level of theory, the most stable structure of the dimer was obtained at R = 6.82 au, theta(a) = 12.9 degrees , theta(b) = 76.0 degrees , and phi = 180 degrees , with a well depth of 716 microE(h). Two other minima were found for canted and X-shaped configurations with potential energies around -596 and -629 microE(h), respectively. Hexadecapole moments of monomers play an important role in the anisotropy of interaction energy that is highly R-dependent at intermediate intermolecular distances. The quality of potentials was tested by computing values of the second virial coefficient. The fitted MP4 potential has a more reasonable agreement with experimental values.  相似文献   

12.
We report an analytical ab initio three degrees of freedom (3D) spin-orbit-correction surface for the entrance channel of the F + methane reaction obtained by fitting the differences between the spin-orbit (SO) and non-relativistic electronic ground state energies computed at the MRCI+Q/aug-cc-pVTZ level of theory. The 3D model surface is given in terms of the distance, R(C-F), and relative orientation, Euler angles ? and θ, of the reactants treating CH(4) as a rigid rotor. The full-dimensional (12D) "hybrid" SO-corrected potential energy surface (PES) is obtained from the 3D SO-correction surface and a 12D non-SO PES. The SO interaction has a significant effect in the entrance-channel van der Waals region, whereas the effect on the energy at the early saddle point is only ~5% of that at the reactant asymptote; thus, the SO correction increases the barrier height by ~122 cm(-1). The 12D quasiclassical trajectory calculations for the F + CH(4) and F + CHD(3) reactions show that the SO effects decrease the cross sections by a factor of 2-4 at low collision energies and the effects are less significant as the collision energy increases. The inclusion of the SO correction in the PES does not change the product state distributions.  相似文献   

13.
Ab initio MO calculations have been performed for neutral and cationic C2H2F2 structures. Olefinic and carbene structures are investigated for the neutral isomers, while olefinic, carbene, and fluoronium-type cations are found. Stability orders and rotational barriers are discussed in terms of orbital and Coulomb interaction. Contrary to previous studies, the higher stability of the geminal isomers is interpreted to be caused by Coulomb attraction.  相似文献   

14.
Three‐dimensional time‐dependent quantum wave packet calculations have been carried out for Br + H2 on a new global ab initio and a semi‐empirical extended London–Eyring–Polanyi–Sato potential energy surface. It is shown that on the ab initio surface, the threshold energy is much lower, and the reaction probabilities, cross sections, and rate constants are much larger. The effects of the initial rovibrational excitation have also been studied. Comparison of rate constants with experimental measurement implies that the ab initio surface is more suitable for quantum dynamic calculation. The possible reasons and mechanism for the dynamical difference on the two PES are analyzed and discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

15.
High level ab initio calculations using complete active space self-consistent field and multi reference single and double excitation configuration interaction methods with cc-pVDZ (correlation consistent polarized valence double zeta) and cc-pVTZ (triple zeta) basis sets have been performed to elucidate the reaction mechanism of the ion-molecule reaction, C2H2(1Sigmag+) + O+(4S), for which collision experiment has been performed by Chiu et al. [J. Chem. Phys. 109, 5300 (1998)]. The minor low-energy process leading to the weak spin-forbidden product C2H2+ (2Piu) + O(1D) has been studied previously and will not be discussed here. The major pathways to form charge-transfer (CT) products, C2H2+ (2Piu) + O(3P) (CT1) and C2H2+ (4A2) + O(3P) (CT2), and the covalently bound intermediates are investigated. The approach of the oxygen atom cation to acetylene goes over an energy barrier TS1 of 29 kcal/mol (relative to the reactant) and adiabatically leads the CT2 product or a weakly bound intermediate Int1 between CT2 products. This transition state TS1 is caused by the avoided crossing between the reactant and CT2 electronic states. As the C-O distance becomes shorter beyond the above intermediate, the C1 reaction pathway is energetically more favorable than the Cs pathway and goes over the second transition state TS2 of a relative energy of 39 kcal/mol. Although this TS connects diabatically to the covalent intermediate Int2, there are many states that interact adiabatically with this diabatic state and these lead to the other charge-transfer product CT1 via either of several nonadiabatic transitions. These findings are consistent with the experiment, in which charge transfer and chemical reaction products are detected above 35 and 39 kcal/mol collision energies, respectively.  相似文献   

16.
The analytic potential energy surface (APES) for the exchange reaction of HeH(+) (X(1)Σ(+)) + He at the lowest singlet state 1(1)A(∕) has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H(+)He (v = 0, 1, 2, j = 0) → HeH(+) + He by means of quasi-classical trajectory and compare them with the previous result in literature.  相似文献   

17.
Classical simulations of the reactions between HCO+/COH+ and hydrogen atoms, as well as their deuterated variants, have been carried out on an ab initio interpolated potential energy surface. The surface is constructed at the quadratic configuration interaction with single and double excitation level of ab initio calculation. At low energies we observe reaction channels associated with the isomerization of the cation, hydrogen/deuterium exchange, and the combination of isomerization with exchange. The HCO+/DCO+ ions only undergo exchange, and deuteration is more facile than the release of deuterium. The COH+/COD+ ions undergo isomerization or isomerization combined with exchange, the latter being the dominant reaction channel. Deuteration is again more facile than the release of deuterium, in combination with isomerization. These results are consistent with experimental measurements and with hypotheses on the deuteration of molecules in the interstellar medium.  相似文献   

18.
A full-dimensional, ab initio based potential energy surface (PES) for CH(5)(+), which can describe dissociation is reported. The PES is a precise fit to 36173 coupled-cluster [CCSD(T)] calculations of electronic energies done using an aug-cc-pVTZ basis. The fit uses a polynomial basis that is invariant with respect to permutation of the five H atoms, and thus describes all 120 equivalent minima. The rms fitting error is 78.1 cm(-1) for the entire data set of energies up to 30,000 cm(-1) and a normal-mode analysis of CH(5)(+) also verifies the accuracy of the fit. Two saddle points have been located on the surface as well and compared with previous theoretical work. The PES dissociates correctly to the fragments CH(3)(+) + H(2) and the equilibrium geometry and normal-mode analyses of these fragments are also presented. Diffusion Monte Carlo calculations are done for the zero-point energies of CH(5)(+) (and some isotopologs) as well as for the separated fragments of CH(5)(+), CH(3)(+) + H(2) and those of CH(4)D(+), CH(3)(+) + HD and CH(2)D(+) + H(2). Values of D(0) are reported for these dissociations. A molecular dynamics calculation of CH(4)D(+) dissociation at one total energy is also performed to both validate the applicability of the PES for dynamics studies as well as to test a simple classical statistical prediction of the branching ratio of the dissociation products.  相似文献   

19.
应用量子化学从头计算和密度泛函理论(DFT)对HO2+C2H2反应体系的反应机理进行了研究.在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2+ C2H2反应的二重态反应势能面.计算结果表明,主要反应方式为自由基HO2的H原子和C2H2分子中的C原子结合,经过一系列异构化,最后分解得到主要产物P1 (CH2O+ HCO).此反应是放热反应,化学反应热为-321.99 kJ·mol-1.次要产物为P2 (CO2 +CH3),也是放热反应.  相似文献   

20.
Non-empirical self-consistent-field calculations have been carried out for 38 points on the potential surface for the Cl + H2 → ClH + H chemical reaction. A basis set of seven s, five p, and one d functions on chlorine and three s and one p on each hydrogen atom was used. The least energy path occurs for the linear Cl---H---H arrangement. A much higher barrier is found for the approach of Cl along the H---H perpendicular bisector. The linear barrier height is predicted to be 26.2 kcal/mole and the saddle point occurs for R(Cl---H) ≈ 1.46 Å, R(H---H) ≈ 0.94 Å. The experimental activation energy is 5.5 kcal/mole. It seems likely that a general feature of the Hartree-Fock approximation is an overestimation of barrier heights. The exothermicity is calculated to be −6.7 kcal/mole, compared to the near Hartree-Fock result −2.3 kcal/mole and experiment −3.0 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号