首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A')→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.  相似文献   

2.
A 285-point multi-reference configuration-interaction involving single and double excitations (MRS-DCI) potential energy surface for the electronic ground state of Li2H is determined by using 6-311G (2df, 2pd) basis set. A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a X2 of 4.64 × 10-6. The equilibrium geometry occurs at Re =0.172 nm and <LiHLi =94.10. The dissociation energy for reaction Li2H(2A)⇑ Li2(1g)+H(2S) is 243.910 kJ/mol. and that for reaction Li2H(2A)⇑HLi(1be)+Li(2S) is 106.445 kJ/mol. The inversion barrier height is 50.388 kJ/mol. The vibrational energy levels are calculated using the discrete variable representation (DVR) method. Project supported by the National Natural Science Foundation of China (grant No. 29673029) and by the Special Doctoral Research Foundation of the State Education Commission of China.  相似文献   

3.
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set extended with a series of 3s3p2d1f1g midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 A? from the molecular center of mass and at an angle of 9.08° with respect to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data.  相似文献   

4.
A two-dimensional symmetric stretching-bending potential surface for the electronic ground state of the XeF2 molecule has been computed by means of self-consistent field and multi-reference configuration interaction methods. At the correlated level of treatment it is found that the linear nuclear arrangement of XeF2 with XeF bond distances close to 200 pm corresponds only to a local minimum on the potential energy surface separated from the dissociation products Xe + 2F by a high energy barrier. The results of a vibrational analysis study enable a reliable reproduction and interpretation of available experimental data concerning the infrared spectrum of the molecule.  相似文献   

5.
6.
We report a new "spectroscopic" potential energy surface (PES) of formaldehyde (H(2)(12)C(16)O) in its ground electronic state, obtained by refining an ab initio PES in a least-squares fitting to the experimental spectroscopic data for formaldehyde currently available in the literature. The ab initio PES was computed using the CCSD(T)/aug-cc-pVQZ method at 30 840 geometries that cover the energy range up to 44 000 cm(-1) above equilibrium. Ro-vibrational energies of formaldehyde were determined variationally for this ab initio PES by means of the program TROVE [Theoretical ROtation-Vibration Energies; S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)]. The parameter values in the analytical representation of the PES were optimized in fittings to 319 ro-vibrational energies with J = 0, 1, 2, and 5. The initial parameter values in the fittings were those of the ab initio PES, the ro-vibrational eigenfunctions obtained from this PES served as a basis set during the fitting process, and constraints were imposed to ensure that the refined PES does not deviate unphysically from the ab initio one in regions of configuration space not sampled by the experimental data. The resulting refined PES, referred to as H(2)CO-2011, reproduces the available experimental J ≤ 5 data with a root-mean-square error of 0.04 cm(-1).  相似文献   

7.
The potential energy surface (PES) of linear Ar 3 + is calculated at the MP4/6-31G* level including all single, double, triple and quadruple excitations. The results show that the PES of the linear Ar 3 + has a very flat valley along the asymmetric stretching vibration normal mode, ν3. A higher level quadratic configuration interaction calculation including single, double and triple substitutions QCISD (T) along this flat valley suggests that an asymmetric geometry energy minimum reported earlier based on MP2 [1] is due to symmetry breaking in UHF. The global minimum of the PES is found to be for the symmetric geometry atR ab =R bc =2.66±0.01 Å, which is in good agreement with the MRD-CI calculation [2] and expectations from our earlier photodissociation experiments [3]. The calculational results are compared with other theoretical calculations, and are discussed in the context of the photodissociation and dynamics of dissociation experiments conducted on Ar 3 + .  相似文献   

8.
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied  相似文献   

9.
The electron-deficient diatomic boron molecule has long puzzled scientists. As yet, the complete set of bound vibrational energy levels is far from being known, experimentally as well as theoretically. In the present ab initio study, all rotational-vibrational levels of the X (3)Σ(g)(-) ground state are determined up to the dissociation limit with near-spectroscopic accuracy (<10 cm(-1)). Two complete sets of bound vibrational levels for the (11)B(2) and (11)B-(10)B isotopomers, containing 38 and 37 levels, respectively, are reported. The results are based on a highly accurate potential energy curve, which also includes relativistic effects. The calculated set of all vibrational levels of the (11)B(2) isotopomer is compared with the few results derived from experiment [Bredohl, H.; Dubois, I.; and Nzohabonayo, P. J. Mol. Spectrosc. 1982, 93, 281; Bredohl, H.; Dubois, I.; and Melen, F. J. Mol. Spectrosc. 1987, 121, 128]. Theory agrees with experiment within 4.5 cm(-1) on average for the four vibrational level spacings that are so far known empirically. In addition, the present theoretical analysis suggests, however, that the transitions from higher electronic states to the ground state vibrational levels v = 12-15 deserve to be reanalyzed. Whereas previous experimental investigators considered them to originate from the v' = 0 vibrational level of the upper state (2)(3)Σ(u)(-), the present results make it likely that these transitions originate from a different upper state, namely the v' = 16 or the v' = 17 vibrational level of the (1)(3)Σ(u)(-) state. The ground state dissociation energy D(0) is predicted to be 23164 cm(-1).  相似文献   

10.
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1).  相似文献   

11.
We report an ab initio intermolecular potential energy surface of the Ar-HCCCN complex using a supermolecular method. The calculations were performed using the fourth-order M?ller-Plesset theory with the full counterpoise correction for the basis set superposition error and a large basis set including bond functions. The complex was found to have a planar T-shaped structure minimum and a linear minimum with the Ar atom facing the H atom. The T-shaped minimum is the global minimum with the well depth of 236.81 cm(-1). A potential barrier separating the two minima is located at R=5.57 A and theta=20.39 degrees with the height of 151.59 cm(-1). The two-dimensional discrete variable representation was employed to calculate the rovibrational energy levels for Ar-HCCCN. The rovibrational spectra including intensities for the ground state and the first excited intermolecular vibrational state are also presented. The results show that the spectra are mostly b-type (Delta K(a)=+/-1) transitions with weak a-type (Delta K(a)=0) transitions in structure, which are in good agreement with the recent experimental results [A. Huckauf, W. Jager, P. Botschwina, and R. Oswald, J. Chem. Phys. 119, 7749 (2003)].  相似文献   

12.
The equilibrium structure and potential energy surface of calcium dichloride (CaCl2) have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The CaCl2 molecule was found to be linear at equilibrium. The vibration-rotation energy levels of various CaCl2 isotopomers were predicted by the variational method. The calculated spectroscopic constants could be used to guide future high-resolution spectroscopic experiments on calcium dichloride.  相似文献   

13.
The ground state intermolecular potential energy surface for the p-difluorobenzene-Ar van der Waals complex is evaluated using the coupled cluster singles and doubles including connected triple excitations [CCSD(T)] model and the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. The surface minima are characterized by the Ar atom located above and below the difluorobenzene center of mass at a distance of 3.5290 A. The corresponding binding energy is -398.856 cm(-1). The surface is used in the evaluation of the intermolecular level structure of the complex. The results clearly improve previously available data and show the importance of using a good correlation method and basis set when dealing with van der Waals complexes.  相似文献   

14.
The equilibrium structure and potential energy surface of beryllium dihydride BeH(2) in its ground electronic state have been determined from highly accurate ab initio calculations. The vibration-rotation energy levels of three isotopomers BeH(2), BeD(2), and BeHD were predicted using the variational method. The calculated spectroscopic constants are in remarkably good agreement with the existing experimental data (sub-cm(-1) accuracy) and should be useful in a further analysis of high-resolution vibration-rotation spectra of all three isotopomers.  相似文献   

15.
An ab initio-based global double many-body expansion potential energy surface is reported for the first electronic state of the NO(2)((2)A") manifold. Up to 1700 ab initio energies have been employed to map the full configuration space of the title molecule, including stationary points and asymptotic channels. The calculated grid energies have been scaled to account for the incompleteness of the basis set and truncation of the MRCI expansion and fitted analytically with a total root-mean-squared-deviation smaller than 1.0 kcal mol(-1). The lowest point of the potential energy surface corresponds to the (2)B(1) linear minimum, which is separated from the C(s) distorted minimum by a C(2v) barrier of ≈9.7 kcal mol(-1). As usual, the proposed form includes a realistic representation of long-range interactions. Preliminary work indicates its reliability for reaction dynamics.  相似文献   

16.
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.  相似文献   

17.
A three-dimensional global potential energy surface for the ground (X (1)Sigma(+)(g))electronic state of HgH(2) is constructed from more than 13,00 ab initio points. These points are generated using an internally contracted multireference configuration interaction method with the Davidson correction and a large basis set. Low-lying vibrational energy levels of HgH(2), HHgD, and HgD(2) calculated using the Lanczos algorithm are found to be in good agreement with the available experimental band origins. The majority of the vibrational energy levels up to 9000 cm(-1) are assigned with normal mode quantum numbers. Our results indicate a gradual transition for the stretching vibrations from the normal mode regime at low energies to the local mode regime near 9000 and 8000 cm(-1) for HgH(2) and HgD(2), respectively, as evidenced by a decreasing energy gap between the (0,0,n(3)) and (1,0,n(3)-1) vibrational states and bifurcation of the corresponding wave functions.  相似文献   

18.
Ab initio calculations employing a standard double-zeta basis set augmented with various polarization functions have been used to investigate the lowest energy region of the ground-state potential energy surface of the formamide molecule. Hartree-Fock calculations with only d polarization functions on the nonhydrogen atoms located two stable minima, that with geometry distorted from planarity having slightly lower energy; only one stable minimum with planar structure is found when p polarization functions on the hydrogens are included. In contrast optimizations, which account approximately for the correlation energy using second-order Møller-Plesset perturbation theory consistently favor a single slightly nonplanar minimum energy geometry.  相似文献   

19.
An extensive quantum chemical study of the potential energy surfaces (PES) for the association reaction of NH2 with CN and the subsequent isomerization and dissociation reactions has been carried out using density functional theory (DFT)/B3LYP/6‐311++G(3df,2p) level of theory on both singlet and triplet states. The reaction mechanism on the triplet surface is more complicated than that on the singlet surface. A total of 19 isomers and 46 transition states have been identified and characterized on the triplet PES. Among them, IM2 (IM2a), IM3 (IM3a, IM3b), and IM10 are the lowest‐lying isomers with thermodynamic stability. Twenty available dissociation channels, depending on the different initial isomers, have been identified. On the singlet surface, only 12 isomers and 16 transition states have been found, and among them IM1(S) and IM2(S) are the lowest‐lying isomers. The higher isomerization and dissociation barriers on the singlet surface indicate that the addition and the subsequent reactions of NH2+CN are most likely to occur on the triplet PES because of the lower barriers. A prediction can be made for the possible mechanism explaining the production of H+HNCN. Besides HNCN, other major products are NH+HCN and NH+HNC, which are produced by direct dissociation reactions from triplet IM2 and IM3, respectively. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号