首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study was carried out to investigate the effects of heat transfer surface orientation and the solid–liquid contact angle on the boiling heat transfer and critical heat flux (CHF) in water pool boiling using a smooth heat-transfer surface under atmospheric pressure. The orientation angle was ranged from 0° (up-facing horizontal position) to 180° (down-facing horizontal position) with a pace of 45°. The three kinds of heat transfer surfaces having different solid–liquid contact angles were the normal surface with a contact angle of 55°, the hydrophilic surface with a contact angle of 30° and the superhydrophilic surface with a contact angle of 0°. The experimental results indicate that orientation and contact angle have complex, coupling effects on heat transfer and CHF. A predicting correlation for the CHF which takes the effects of both orientation and contact angle into account is established. The predicting correlation agrees reasonably well with the experimental data.  相似文献   

2.
Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well-known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. A rectangular flow channel with 10-mm width and 5-mm height was used. A 10 mm-diameter disk-type copper surface, heated by conduction heat transfer, was placed at the bottom surface of the flow channel as a test heater. Aqueous nanofluids with alumina nanoparticles at the concentration of 0.01% by volume were investigated. The experimental results showed that the nanofluid flow boiling CHF was distinctly enhanced under the forced convective flow conditions compared to that in pure water. Subsequent to the boiling experiments, the heater surfaces were examined with scanning electron microscope and by measuring contact angle. The surface characterization results suggested that the flow boiling CHF enhancement in nanofluids is mostly caused by the nanoparticles deposition of the heater surface during vigorous boiling of nanofluids and the subsequent wettability enhancements.  相似文献   

3.
Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. Changing flow velocity from 0 m/s to 4 m/s, the water boiling on nanoparticles-coated heater was conducted and CHF increased at a given velocity. To understand clearly the mechanism of flow boiling CHF enhancement in nanofluid, the visualization of the nucleate boiling and CHF phenomenon was conducted using the high-speed video camera. It was found that the boiling heat transfer on the nanoparticles-coated heater was lower than that on bare heater, which induced the different flow regime at same heat flux. The different wetting zone on bare and nanoparticles-coated heaters was observed by visualization study. Based the wetting zone fraction, there was brief that the nucleate boiling fraction on heater would be related with the surface wettability. A new concept of flow boiling model was proposed based on the wetting zone fraction. Finally, the effect of nanoparticles deposition layer on the heater was interpreted with the physical mechanisms to increase CHF.  相似文献   

4.
In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 °C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001%, 0.001%, 0.01%, and 0.05%. For the dispersion of CNTs, polyvinyl pyrrolidone polymer is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the aqueous solutions with CNTs are lower than those of pure water in the entire nucleate boiling regime. On the other hand, critical heat flux of the aqueous solution is enhanced greatly showing up to 200% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat fluxes and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results in.  相似文献   

5.
Effect of inclination angles on the pool boiling heat transfer on ultra-light copper foam covers was studied using acetone as the working fluid. The inclination angle was from 0° to 90°. It is found that copper foam covers decrease the surface superheat at the onset of nucleate boiling and extend the operation ranges of surface superheats and heat fluxes, significantly. Boiling curves are crossed between low and high inclination angles. Heat transfer coefficients are increased, attain maximum values, and then are decreased with continuous increases in heat fluxes. The thermal performance is very insensitive to inclination angles at low pool liquid temperatures. The thermal performance is better for the saturation pool boiling heat transfer at small surface superheats, but it is better for the subcooled pool boiling heat transfer at high surface superheats. The Nusselt number is well correlated using the 812 data points, with the maximum error of 20%.  相似文献   

6.
Experiments were performed to study boiling induced nanoparticle coating and its influence on pool boiling heat transfer using low concentrations of CuO- nanofluid in distilled water at atmospheric pressure. To investigate the effect of the nanoparticle coated surface on pool boiling performance, two different concentrations of CuO nanofluids (0.1 and 0.5?g/l) were chosen and tests were conducted on a clean heater surface in nanofluid and nanoparticle coated surface in pure water. For the bare heater tested in CuO nanofluid, CHF was enhanced by 35.83 and 41.68?% respectively at 0.1 and 0.5?g/l concentration of nanofluid. For the nanoparticle coated heater surface obtained by boiling induced coating using 0.1 and 0.5?g/l concentration of nanofluid and tested in pure water, CHF was enhanced by 29.38 and 37.53?% respectively. Based on the experimental investigations it can be concluded that nanoparticle coating can also be a potential substitute for enhancing the heat transfer in pure water. Transient behaviour of nanofluid was studied by keeping heat flux constant at 1,000 and 1,500?kW/m2 for 90?min in 0.5?g/l concentration. The boiling curve shifted to the right indicating degradation in boiling heat transfer due to prolonged exposure of heater surface to nanofluid. Experimental outcome indicated that pool boiling performance of nanofluid could be a strong function of time and applied heat flux. The longer the duration of exposure of the heater surface, the higher will be the degradation in heat transfer.  相似文献   

7.
The boiling models use departure diameter and frequency in closure relations for the calculation of nucleate boiling heat flux. These parameters are normally derived from empirical correlations which depend heavily on experiments. While these parameters are studied mostly for saturated conditions, there is not sufficient data for the values of departure diameter and frequency in subcooled boiling. In this work, the bubble departure characteristics, i.e. the departure diameters and frequency have been measured using high speed visualization experiments with subcooled demineralized water at atmospheric pressure for nucleate pool boiling conditions. The water pool dimensions were 300 mm × 135 mm × 250 mm with four different heating elements to carry out the parametric studies of bubble departure behavior. The considered parameters were heater surface roughness, heater geometry and heater inclination along with the experimental conditions like degree of subcooling (ΔTsub = 5−20 K), superheat (ΔTsat = 1−10 K) and the heat flux. The departure diameters and frequencies were directly measured from the images captured. It was intended to generate the subcooled nucleate pool boiling data under a wide range of conditions which are not present in the literature. The departure diameter was found to increase with the wall superheat, heater size and the inclination angle while the liquid subcooling and surface roughness produced a damping effect on the diameter. The departure frequency was found to increase with the wall superheat and the inclination angle, but decreases with an increase in the heater size. The frequency increases with the degree of subcooling except very close to the saturation, and is unaffected by the surface roughness beyond a certain superheat value.  相似文献   

8.
The effects of ultrasonic vibration on critical heat flux (CHF) have been experimentally investigated under natural convection condition. Flat bakelite plates coated with thin copper layer and distilled water are used as heated specimens and working fluid, respectively. Measurements of CHF on flat heated surface were made with and without ultrasonic vibration applied to working fluid. An inclination angle of the heated surface and water subcooling are varied as well. Examined water subcoolings are 5°C, 20°C, 40°C and the angles are 0°, 10°, 20°, 45°, 90°, 180°. The measurements show that ultrasonic wave applied to water enhances CHF and its extent is dependent upon inclination angle as well as water subcooling. The rate of increase in CHF increases with an increase in water subcooling while it decreases with an increase in inclination angle. Visual observation shows that the cause of CHF augmentation is closely related with the dynamic behaviour of bubble generation and departure in acoustic field.  相似文献   

9.
 The purpose of Critical heat flux (CHF) experiments was to determine the role of various types and thickness of enhanced coated surface on a horizontal, vertically oriented ribbon heaters made of Ti and Steel 1010 of different thickness. Saturated pool boiling in FC-72 at atmospheric pressure was used in the experiment. The microstructure and surface topography are important factors in pool boiling CHF. In conditions of highly wetting FC-72 and increased roughness, CHF increased by 6 to 12%. However, CHF increased by 29% with greater topographic unevenness of the surface and lower roughness, which was obtained by etching Steel 1010 in H2SO4 acid. CHF also increased when the content of metals and metal oxides particles in the coating were increased. The CHF ratio of enhanced coated surface to a ribbon heater featuring a standard surface finish is up to 2.3. In addition, the asymptotic CHF of these uncoated heaters was considerably exceeded. Received on 17 January 2000  相似文献   

10.
The pool boiling critical heat flux (CHF) performance of aqueous nanofluids was investigated using various nanoparticles of TiO2, Al2O3, and SiO2. The usage of a nanofluid as a working fluid can significantly enhance the pool boiling CHF, which was found to be strongly dependent on the kind of nanoparticle, as well as its concentration. A nanoparticle surface coating was observed on the heating surface after the experiment. The CHF of pure water on the nanoparticle-coated surface was higher than that of nanofluids for all cases. This revealed that the cause of the CHF enhancement using nanofluids is due to the fact that the heater surface is modified by the nanoparticle deposition. The mechanism of CHF enhancement due to the nanoparticle coating was discussed, relating it to surface wettability, surface roughness, and maximum capillary wicking height of the nanoparticle-coated surface.  相似文献   

11.
At atmospheric pressure filmwise (FWC) and dropwise (DWC) condensation have been studied on the surface of copper discs which were coated by silicon-modified amorpheous hydrogenated carbon (a-C?:?H-Si) films of different thickness. On vertically oriented surfaces the DWC heat transfer coefficients were found to be larger by a factor of about 10 than the FWC coefficients which follow as function of surface subcooling temperature quite well Nusselt’s theory. Varying the angle of surface inclination, the DWC coefficient decreased down to about 40% of the vertical-surface values for 180° (face down orientation). The mean value for all inclination angles between 30° and 180° was calculated to be 87.6% of the maximum value for the 90°-orientation. Partly coating of the copper surface indicates a strong heat transfer enhancement of DWC over FWC even for relative small coated parts (e.g., 19%-coating yields an enhancement by a factor 2.3 for a cooling water flow rate of 4?m3/h). The diamond like properties of the a-C?:?H-coatings promise long stand times and thus application also in real technical condensation systems.  相似文献   

12.
TiO2/water nanofluids were prepared and tested to investigate the effects of an ionic additive (i.e., nitric acid in this study) on the critical heat flux (CHF) behavior in pool boiling. Experimental results showed that the ionic additive improved the dispersion stability but reduced the CHF increase in the nanofluid. The additive affected the self-assembled nanoparticle structures formed on the heater surfaces by creating a more uniform and smoother structure, thus diminishing the CHF enhancement in nanofluids.  相似文献   

13.
Based on experimental investigations the present study evaluates instability and heat transfer phenomenon under condition of periodic flow boiling of water and ethanol in parallel triangular micro-channels. Tests were performed in the range of hydraulic diameter 100–220 μm, mass flux 32–200 kg/m2 s, heat flux 120–270 kW/m2, vapor quality x = 0.01–0.08. The period between successive events depends on the boiling number and decreases with an increase in the boiling number. The initial film thickness decreases with increasing heat flux. When the liquid film reached the minimum initial film thickness CHF regime occurred. Temporal variations of pressure drop, fluid and heater temperatures were periodic. Oscillation frequency is the same for the pressure drop, for the fluid temperature at the outlet manifold, and for the mean and maximum heater temperature fluctuations. All these fluctuations are in phase. The CHF phenomenon is different from that observed in a single channel of conventional size. A key difference between micro-channel heat sink and single conventional channel is amplification of parallel-channel instability prior to CHF. The dimensionless experimental values of the heat transfer coefficient are presented as the Nusselt number dependence on the Eotvos number and the boiling number.  相似文献   

14.
Performance of horizontal copper heaters with a transverse fin structure was investigated for pool boiling heat transfer and critical heat flux limits. Data were obtained for 5.1 and 7.6 cm diameter structured cooper and brass heaters in saturated R-113 boiling at pressures ranging between 0.037 and 1 atm. The fin structure consisted of 0.16 cm×0.16 cm×0.32 cm high square fins with an interfin spacing of 0.16 cm. Following a similar methodology to Haley and Westwater1, a numerical analysis of the heat transfer phenomenon was performed by solving the one-dimensional fin conduction equation with a non-linear heat transfer boundary condition obtained from the previously reported data for R-113 boiling on plain surfaces. The predictions agreed with the data at the 1 atm pressure levels but showed deviations at the low pressure levels. The results showed that, compared with plain surface heaters of the same diameters the finned structured surfaces investigated: (a) decreased the wall temperature differences for a given heat flux and saturated pool boiling conditions, thus improving the nucleate boiling heat transfer coefficients, and (b) increased the critical heat flux limits, calculated as the power input divided by the heater projected area, by a factor of 2–2.5.  相似文献   

15.
To investigate the CHF characteristics of nano-fluids, pool boiling experiments of nano-fluids with various concentrations of TiO2 or Al2O3 nanoparticles were carried out using a 0.2 mm diameter cylindrical Ni–Cr wire under atmospheric pressure. The results show that the CHFs of various nano-fluids are significantly enhanced over that of pure water. SEM observation subsequent to the CHF experiment revealed that a nanoparticle coating is generated on the wire surface during pool boiling of nano-fluids. The CHF of pure water was measured on a nanoparticle-coated wire which was produced during the pool boiling experiments of nano-fluids. The CHF of pure water on the nanoparticle-coated wire was similar to that of nano-fluids. This result clearly shows that the main reason for CHF enhancement of nano-fluids is the modification of the heating surface by the nanoparticle deposition. The nanoparticle-coated surface was characterized with various parameters closely related to pool boiling CHF: surface roughness, contact angle, and capillary wicking performance. Finally, CHF enhancement of nano-fluids is discussed using the parameters.  相似文献   

16.
Enhancement of the critical heat flux in pool boiling by the attachment of a honeycomb-structured porous plate on a heated surface is investigated experimentally using water under saturated boiling conditions. As the height of the honeycomb porous plate on the heated surface decreases, the CHF increases to 2.5 MW/m2, which is approximately 2.5 times that of a plain surface (1.0 MW/m2). Automatic liquid supply due to capillary action and reduction of the flow resistance for vapor escape due to the separation of liquid and vapor flow paths by the honeycomb-structure are verified to play an important role in the enhancement of the CHF. A simplified one-dimensional model for the capillary suction limit, in which the pressure drops due to liquid and vapor flow in the honeycomb porous plate balances the capillary force, is applied to predict the CHF. The calculated results are compared with the measured results.  相似文献   

17.
This paper presents an experimental study dealing with the basic nucleate boiling concerning two finned surfaces placed in a narrow channel. The influence of both the channel width and the orientation of the base surface (horizontal or vertical) are discussed. The experiments were performed in a saturated pool of FC-72 while the channel widths investigated were 2.0 mm and 0.5 mm. The experimental data are compared with those obtained in the case of the unconfined situation of the extended surfaces. Channel width reduction does not affect the heat transferred to the liquid in the case of vertical orientation of the base surface, while it causes a drastic reduction in the heat transfer behavior in the case of a horizontal base surface. For the latter situation, vapor stagnation in the gap was observed after the maximum heat flux had been reached. Received on 13 August 1998  相似文献   

18.
SO2 gas is injected into the different pure liquids using new innovative method via meshed tubes. Many experiments have been performed to investigate the influence of gas injection process on the pool boiling heat transfer coefficient of pure liquids around the horizontal cylinder at different heat fluxes up to 114 kW m?2. Results demonstrate that presence of SO2 gas into the vapor inside the bubbles creates a mass transfer driving force between the vapor phase inside the formed bubbles and liquid phase and also between the gas/liquid interfaces. Local turbulences and agitations due to the gas injection process around the nucleation sites leads the pool boiling heat transfer coefficient to be dramatically enhanced. Besides, some of earlier well-known correlations were unable to obtain the reasonable values for the pool boiling heat transfer coefficients in this particular case. Therefore, the most accurate correlation among the examined correlations was modified to estimate the pool boiling heat transfer coefficient of pure liquids. Experimental data were in a good agreement with those of obtained by the new modified correlation with absolute average deviation of 10 %.  相似文献   

19.
In pool boiling, the electrically heated tube releases the energy non-uniformly to the liquid, due to different surface roughness and flowing liquid. The heat transfer coefficient therefore varies with axial and azimuthal position on the tube. Hence a finite element analysis has been carried out on a horizontal 1in. copper tube for evaporation in pool boiling for three-dimensional conduction heat transfer. A test tube has been made with different surface structures, tested and analysed for heat conduction effects. It has been observed that significant amount of heat flows in azimuthal and axial directions in addition to the heat flow in radial direction.  相似文献   

20.
Critical heat flux during pool boiling on a vertical heater of wire or plate has been measured employing water and R113. The experiment was made for a wire of 0.5 to 2 mm in diameter and for a plate of 5, 7 and 30 mm in width and from 20 to 300 mm in height. The pressure was 1 and 2 bar for water and 1, 2, 3 and 4 bar for R113. The experiment shows that for the case of both wire and plate of 5, 7 mm, a large coalesced bubble entirely surrounds the vertical heater and rises surrounding it, while for the case of w = 30 mm, a large bubble cannot surround and rises along its surface. The characteristic of CHF can be divided into two regimes depending on the flow condition when CHF takes place. Correlations are proposed for the CHF of the wire and the plate of w = 5, and 7 mm, yielding good accuracy. The CHF for the plate of w = 30 mm has a similar tendency to that in one side headed surface and can be predicted reasonably by existing correlation for one side heated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号