首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fabrication of carvacrol-loaded chitosan nanoparticles was achieved by a two-step method, i.e., oil-in-water emulsion and ionic gelation of chitosan with pentasodium tripolyphosphate. The obtained particles possessed encapsulation efficiency (EE) and loading capacity (LC) in the ranges of 14-31% and 3-21%, respectively, when the initial carvacrol content was 0.25-1.25 g/g of chitosan. The individual particles exhibited a spherical shape with an average diameter of 40-80 nm, and a positively charged surface with a zeta potential value of 25-29 mV. The increment of initial carvacrol content caused a reduction of surface charge. Carvacrol-loaded chitosan nanoparticles showed antimicrobial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli with an MIC of 0.257 mg/mL. The release of carvacrol from chitosan nanoparticles reached plateau level on day 30, with release amounts of 53% in acetate buffer solution with pH of 3, and 23% and 33% in phosphate buffer solutions with pH of 7 and 11, respectively. The release mechanism followed a Fickian behavior. The release rate was superior in an acidic medium to either alkaline or neutral media, respectively.  相似文献   

2.
This study describes the preparation of mucoadhesive chitosan nanoparticles containing metronidazole (MZ) intended for colon‐specific delivery. The chitosan nanoparticles were prepared by the ionic gelation method and their in vitro properties were studied. The release profiles of MZ from the nanoparticles were determined by UV–Vis absorption measurement at λmax 278 nm. Scanning electron microscopy was used for morphology observation. The nanoparticles exhibited mucoadhesive properties, which diminished with increasing drug content. The nanoparticles with a particle size range between 200 and 300 nm exhibited excellent mucoadhesive properties. The results show that the formulated nanoparticles have succeeded in controlling the release of MZ over a 12‐hr period. In conclusion, the release of MZ was found to be dependent upon the composition of the nanoparticles, the ratio of the components and possible particle size, as well as bioadhesive ability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Chemotherapy is the most common treatment for all cancer patients but this treatment poses many side effects due to lack of drug’s selectivity. To overcome this problem, utilizing a better and more effective delivery agent is the solution. Mesoporous silica nanoparticles (MSNs) emerged as a promising platform in development of drug delivery agent. This is due to its desirable properties such as tunable pores, large surface area, good biocompatibility and easy functionalization. Furthermore, these properties can be tuned through the utilization of alternative template such as pyridinium ionic liquid. Besides, by employing surface functionalization, the effectiveness of MSNs as drug delivery agent may also increase. This work reported the usage of 1-hexadecylpyridinium bromide ionic liquid as template for MSNs production and the surface of MSNs was then further functionalized via post – grafting method in order to obtain MSN – NH2, MSN – SH and MSN – COOH as drug carrier, respectively. These functionalized MSNs were then used to study the drug loading and drug release of hydrophilic drug, gemcitabine and hydrophobic drug, quercetin. For quercetin, MSN-NH2 had the highest drug loading percentage (72%) and slowest release (14%) in 48 h while for gemcitabine, it was found that MSN-COOH had the highest drug loading percentage (45%) and slowest release (15%) in 48 h. Based on the results, it is suggested that mesoporous silica nanoparticle with surface functionalization has suitable properties for controlled drug release which gives constant release behavior over a period of time to avoid repeated administration of drug where the drug is administered at a fixed dosage and regular time interval.  相似文献   

4.
玉米醇溶蛋白/壳聚糖复合纳米微球的制备及性能研究   总被引:1,自引:0,他引:1  
以生物相容性的玉米醇溶蛋白(Zein)和壳聚糖(Chitosan)为原料,利用溶剂-非溶剂相分离法成功制备了玉米醇溶蛋白/壳聚糖复合纳米微球(NSZ/CS),运用FT-IR、SEM和TEM等对复合纳米微球进行了表征。采用罗丹明B(RB)为模型药物分子,研究了复合纳米微球的药物释放性能。与玉米醇溶蛋白纳米微球(NSZ)相比,复合纳米微球NSZ/CS对RB和Dox·HCl的包封率显著上升,分别可达83.5%和75.3%。NSZ/CS对RB的累积释放量也大幅度提高。在模拟人工胃液和人工肠液中,NSZ/CS对RB释放36 h后,累积释放量分别为85.2%和95.4%。进一步将NSZ/CS用于负载抗癌药物盐酸阿霉素(Dox·HCl),发现Dox@NSZ/CS在p H=7.4的磷酸缓冲液(PBS)中的累积释放量达91.0%。复合纳米微球NSZ/CS有望作为水溶性药物载体应用于生物医药领域。  相似文献   

5.
A novel porous material was designed and prepared in this work. A hydrophobic open-celled porous polystyrene (PS) was first synthesized via a concentrated emulsion polymerization of water in styrene. Subsequently the porous polystyrene was saturated with an aqueous solution of acrylamide (AM) and an initiator, which was subjected to another polymerization and the resulted polyacrylamide (PAM) penetrated in the cells and intercellular pores of the PS matrix. The PAM would change its volume according to the environmental humidity and thus adjusted the permeation of the material. The morphology, pore size distributions, water absorption, and vapor permeation of the materials were investigated.  相似文献   

6.
7.
N-Phthaloylchitosan-grafted poly(ethylene glycol) methyl ether (mPEG) gives a milky solution when dispersed in water and a series of solvents. The appearance of turbidity depends on the types of solvents, i.e., protic and aprotic solvents. N-Phthaloylchitosan-grafted mPEG shows an aggregation of sphere-like particles as observed by scanning electron microscopy. Transmission electron microscopy indicates that the spheres are at the nano level. When the chain length of mPEG is as high as 5×103 Da the sphere size becomes as small as 80–100 nm on average as observed by transmission electron microscopy. By simply adjusting the hydrophobicity/hydrophilicity of the chitosan chain, a stable nanosphere can be obtained directly.  相似文献   

8.
Anionic and non-ionic copolymer latices with a hydrophobic core and hydrophilic shell were prepared using emulsifier-free emulsion polymerization. Styrene was used as the hydrophobic monomer; acrylic acid, acrylamide, and methacrylamide were employed as the hydrophilic monomers. The amount of chemically bound hydrophilic monomers in latex and unbound homopolymers in water were determined. The salt stability and redispersability of latices in water after spray-drying were also investigated.  相似文献   

9.
采用柠檬酸钠作为稳定剂,通过超声辅助水相共沉淀法合成了柠檬酸修饰的Fe_3O_4纳米粒(Fe_3O_4@CA),进一步采用真空干燥法制备了β-环糊精包覆的Fe_3O_4纳米微球(Fe_3O_4@β-CD).分别利用X射线粉末衍射仪、傅立叶变换红外光谱仪、透射电子显微镜、热重分析仪等表征手段对其进行了结构和形貌表征.同时,以多柔比星为模型药物,考察了Fe_3O_4@β-CD微球对多柔比星的体外释放行为.结果表明,Fe_3O_4@CA纳米粒子呈球形或类球形,平均流体力学直径为84nm,具有顺磁性,室温下饱和磁化强度为17.5emu·g-1,红外光谱结果表明,β-环糊精成功的包覆在Fe_3O_4@CA表面,Fe_3O_4@β-CD的平均流体力学直径为104nm,室温下饱和磁化强度为15.7emu·g-1.体外释放结果表明,Fe_3O_4@β-CD-DOX载药系统在PBS(pH=7.4)溶液中释放缓慢,12h累积释放率为45.5%.结果表明,环糊精改性的Fe_3O_4纳米微球在体外有明显的缓释效果,有望成为理想的抗肿瘤药物载体.  相似文献   

10.
Abstract

Hydrogel composites from polyvinyl alcohol and chitosan have been developed by various researchers as a function of their composition for various medical applications. Although, the solubility of chitosan in acidic solvents may limit its wide bioengineering applications. In this article, we demonstrate that polyvinyl alcohol-chitosan oligosaccharide (water soluble) to develop cross-linked hydrogel network using chemical cross linker. X ray diffraction, Fourier transform infrared spectroscopy, and wettability study of these hydrogels were also performed. Lomefloxacin drug was loaded into the hydrogels and its release profile was studied.  相似文献   

11.
New types of fluorescent nanoparticles (FNPs) were prepared through ionic self-assembly of anthracene derivative and chitosan for applications as drug delivery carriers with real-time monitoring of the process of drug release. Because of the presence of the hydrophilic groups, these FNPs showed excellent dispersion and stability in aqueous solution. The structure and properties of the FNPs were investigated by using means of (1)H NMR, FTIR, SEM, dynamic light scattering (DLS), and so on. The potential practical applications as drug delivery carriers for real-time detection of the drug release process were demonstrated using Nicardipine as a model drug. Upon loading the drug, the strong blue fluorescence of FNPs was quenched due to electron transfer and fluorescence resonance energy transfer (FRET). With release of drug in vitro, the fluorescence was recovered again. The relationship between the accumulative drug release of FNPs and the recovered fluorescence intensity has been established. Such FNPs may open up new perspectives for designing a new class of detection system for monitoring drug release.  相似文献   

12.
The primary objective of this study was to prepare nanostructured lipid carriers loaded with tocotrienol-rich-fraction of palm oil (TRF-NLCs) and to evaluate their antiproliferative effects against neoplastic +SA mammary epithelial cells. This necessitated optimizing the ultrasonic homogenization process parameters and the surfactant to lipid ratio within the NLCs. Therefore, sonication time and pulsar rate were initially evaluated for their effect on the size and polydispersity of the nanoparticles using a full factorial design. Also, varying the surfactant to lipid ratio from 0.25:1 to 3:1 was evaluated for its effect on the same responses. Optimal nanoparticles were obtained when dispersions containing a surfactant to lipid ratio of 0.5:1, with a total lipid concentration of 0.25 (w/v), were sonicated at 60% pulsar rate for 10 min. These parameters were subsequently used to prepare TRF-NLCs. TRF was loaded into the nanoparticles by substituting 10% (TRF-10-NLC) or 50% (TRF-50-NLC) of the lipid phase with TRF. In an extended stability study, no significant change in particle size of the TRF-NLCs was observed over 6 months of storage. In the cell culture studies, TRF-NLCs were shown to exhibit potent antiproliferative effect against neoplastic +SA mammary epithelial cells. The IC50 values of TRF-10-NLCs were 2-fold lower than the IC50 value of the reference TRF/BSA solution. In contrast, TRF-50-NLCs had comparable IC50 values as the TRF/BSA solution, which signified the importance of TRF encapsulation within NLCs on their activity. Furthermore, these findings suggested that TRF-NLCs may have potential value in the treatment of breast cancer.  相似文献   

13.
Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CS-THBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (TPP). The chemical structure and degree of substitution (DS) of di-and tri-hydroxy benzoyl chitosans are determined by FTIR and 1H-NMR spectroscopy. The morphology of particles, size distribution and zeta potential of nanoparticles were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The mean diameters of particles of CS-DHBA and CS-THBA nanoparticles were 144 nm and 112 nm, respectively. It was found that the particles size decreased slightly with decreasing the degree of substitution and increasing degree of deacetylation (DD), due to increasing of ionic crosslinking of ammonium ions and polyanions of tripolyphosphate. The TEM photographs of CS-DHBA show that these particles are spherical in shape, but the particles of CS-THBA show some aggregation. In addition, the solubility and the mechanical properties of the prepared modified chitosans and their nanoparticles were evaluated for bio-adhesive and biomedical application. The results of solubility tests indicated that, the CS-DHBA and CS-THBA have higher solubility at pH > 7 comparing to CS. Also the CS-DHBA, CS-THBA and their nanoparticles showed a significant adhesive capacity and enhanced tensile strength and tensile modulus.  相似文献   

14.
The aim of this work was to formulate the lorazepam loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles by optimization of different preparation variables using 23 factorial design. The effect of three independent factors, the amount of polymer, concentration of the stabilizer and volume of organic solvent was investigated on two dependent responses, i.e., particle size and % drug entrapment efficiency. By using PLGA as polymer, PVA as a stabilizer and dimethyl sulfoxide as organic solvent lorazepam loaded PLGA nanoparticles were successfully developed through modified nanoprecipitation method. FTIR and DSC studies were carried out to examine the interaction between the excipients used and to explore the nature of the drug, the formulation and the nature of drug in the formulations. These nanoparticles were characterized for particle size, shape, zeta potential, % drug entrapment efficiency, % process yield and in vitro drug release behavior. In vitro evaluation showed particles size between 161.0 ± 5.4 and 231.9 ± 4.9 nm, % drug entrapment efficiency of formulations was in the range of 60.43 ± 5.8 to 75.40 ± 1.5, % process yield at 68.34 ± 2.3 to 81.55 ± 1.3 was achieved and in vitro drug release for these formulations was in the range of 49.2 to 54.6%. Different kinetics models, such as zero order, first order, Higuchi model, Hixson-Crowell model and Korsmeyer- Peppas model were used to analyze the in vitro drug release data. Preferred formulation showed particle size of 161.0 ± 5.4 nm, PDI as 0.367 ± 0.014,–25.2 mV zeta potential, drug entrapment efficiency as 64.58 ± 3.6% and 72.48 ± 2.5% process yield. TEM results showed that these nanoparticles were spherical in shape, and follow the Korsmeyer-Peppas model with a release exponent value of n = 0.658.  相似文献   

15.
The hydrolytic erosion of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-NPs) was investigated in vitro. The changes in physical properties of the nanoparticles with time were evaluated by ultra high-pressure liquid chromatographic (UHPLC) analysis, particle size analysis and scanning electron microscopy (SEM). Mass reduction data demonstrated a triphasic erosion pattern for PLGA-NPs with nearly no mass loss (3.0%) up to a week, followed by a rapid mass loss (weeks 1-3, 61.4%), and further followed by slow mass loss (weeks 3-5, 19.8%). SEM revealed microcavitation on the surface of nanoparticles, which tended to increase with the erosion time and eventually particle fragmentation was evident at 5 weeks. A significant increase in particle size was observed at 4 weeks which can be attributed to particle aggregation, however, at about 5 weeks, the particle size decreased significantly owing to particle fragmentation. The hydrolytic erosion of PLGA-NPs was found to be specifically proton catalyzed. The release profile of the model drug, moxifloxacin, from PLGA-NPs was closely related to nanoparticle erosion except for the initial burst release which was based on diffusion. The presence of chitosan in the PLGA-NPs accelerated the rate of erosion of the nanoparticles and reduced the burst release of the drug. An understanding of the erosion mechanism and alteration in erosion by chitosan could give desirable and more uniform drug release kinetics from PLGA-NPs.  相似文献   

16.
Novel less than 100 nm sized magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles advantageous in respect of excellent biodegradation and high level of controllability are successfully prepared. TEM and SEM images showed the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by spherical chitosan nanoparticles. The release behavior of bovine serum albumin entrapped in the particles was of distinctly difference with the changes of pH value of loading medium. The release of bovine serum albumin in those two kinds of particles in the medium of pH=1.0 was much quicker in pH = 7.4 and 9.18. The amount of Bovine serum albumin (BSA) released from the particles at different time intervals was estimated using UV spectrophotomertic method at 279 nm. The dissolution profile and in vitro release kinetics showed that Co0.5Mn0.5Fe2O4-chitosan nanoparticles were promising for controlled delivery of the drug.  相似文献   

17.
A series of random copolymers with different beta-cyclodextrin contents were synthesized by radical copolymerization of MMA with a monovinyl beta-CD monomer. The copolymers were characterized with IR spectroscopy, elemental analysis, DSC, and TGA. Based on these copolymers, their nanoparticles were prepared by using DMF, water, and acetone as solvents. Aqueous dispersions of the nanoparticles were further obtained by dialysis against water. Zetasizer Nano-ZS dynamic light scattering and transmission electron microscopy were employed to characterize the nanoparticles. Using camptothecin as a model drug molecule, the encapsulation efficiency and release behavior of the nanoparticles were investigated.  相似文献   

18.
Chitosan-cyclodextrin hybrid nanoparticles (NPs) were obtained by the ionic gelation process in the presence of glutathione (GSH), chosen as a model drug. NPs were characterized by means of transmission electron microscopy and zeta-potential measurements. Furthermore, a detailed X-ray photoelectron spectroscopy study was carried out in both conventional and depth-profile modes. The combination of controlled ion-erosion experiments and a scrupulous curve-fitting approach allowed for the first time the quantitative study of the GSH in-depth distribution in the NPs. NPs were proven to efficiently encapsulate GSH in their inner cores, thus showing promising perspectives as drug carriers.  相似文献   

19.
20.
Novel biodegradable pH- and thermal-responsive interpenetrating polymer network (IPN) hydrogels were prepared for controlled drug delivery studies. The IPN hydrogels were obtained in mild aqueous acid media by irradiation of solutions of N-acryloylglycine (NAGly) mixed with chitosan, in the presence of glutaraldehyde as a crosslinking agent and using 2,2-dimethoxy-2-phenyl acetophenone as photoinitiator. These hydrogels were subjected to equilibrium swelling studies at different temperatures (25 °C, 37 °C and 45 °C) in buffer solutions of pH 2.1 and 7.4 (similar to that of gastric and intestinal fluids respectively). 5-Fluorouracil (5-FU) was entrapped in the hydrogels, and drug release studies carried out at 37 °C in buffer solutions at pH 2.1 and 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号