首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an earlier paper, two alternative p-Center problems, where the centers serving costumers must be chosen so that exactly one node from each of p prespecified disjoint pairs of nodes is selected, were shown to be NP-complete. This paper considers a generalized version of these problems, in which the nodes from which the p servers are to be selected are partitioned into k sets and the number of servers selected from each set must be within a prespecified range. We refer to these problems as the ‘Set’ p-Center problems. We establish that the triangle inequality (Δ-inequality) versions of these problems, in which the edge weights are assumed to satisfy the triangle inequality, are also NP-complete. We also provide a polynomial time approximation algorithm for the two Δ-inequality Set p-Center problems that is optimal for one of the problems in the sense that no algorithm with polynomial running time can provide a better constant factor performance guarantee, unless P = NP. For the special case ‘alternative’ p-Center problems, which we refer to as the ‘Pair’ p-Center problems, we extend the previous results in several ways. For example, the results mentioned above for the Set p-Center problems also apply to the Pair p-Center problems. Furthermore, we establish and exploit a correspondence between satisfiability and the dominating set type of problems that naturally arise when considering the decision versions of the Pair p-Center problems.  相似文献   

2.
In this paper we address the problem of finding a dominator for a multiple-objective maximization problem with quasiconvex functions. The one-dimensional case is discussed in some detail, showing how a Branch-and-Bound procedure leads to a dominator with certain minimality properties. Then, the well-known result stating that the set of vertices of a polytope S contains an optimal solution for single-objective quasiconvex maximization problems is extended to multiple-objective problems, showing that, under upper-semicontinuity assumptions, the set of (k 21)-dimensional faces is a dominator for k-objective problems. In particular, for biobjective quasiconvex problems on a polytope S, the edges of S constitute a dominator, from which a dominator with minimality properties can be extracted by Branch-and Bound methods.  相似文献   

3.
This paper presents a new concept for generating approximations to the non-dominated set in multiobjective optimization problems. The approximation set A is constructed by solving several single-objective minimization problems in which a particular function D(A, z) is minimized. A new algorithm to calculate D(A, z) is proposed.No general approach is available to solve the one-dimensional optimization problems, but metaheuristics based on local search procedures are used instead. Tests with multiobjective combinatorial problems whose non-dominated sets are known confirm that CHESS can be used to approximate the non-dominated set. Straightforward parallelization of the CHESS approach is illustrated with examples.The algorithm to calculate D(A, z) can be used in any other applications that need to determine Tchebycheff distances between a point and a dominant-free set.  相似文献   

4.
This paper deals with single machine scheduling problems with stochastic precedence relations (so calledGERT networks). Until now most investigations on such problems, dealt with algorithms running in polynomial time. On the other hand, for scheduling problems with deterministic precedence relations exist a lot of results about time complexity. Therefore, the object of this paper is to consider time complexity of scheduling problems with stochastic precedence constraints and to describe the boundary between theNP-hard problems and those which can be solved in polynomial time.  相似文献   

5.
Strang (Mathematical Programming 26, 1983) gave a method to establish a max-flow min-cut theorem in a domain of a Euclidean space. The method can be applied also to max-flow min-cut problems defined by Iri (Survey of Mathematical Programming, North-Holland, 1979) whenever the capacity functions of max-flow problems are bounded and continuous. This paper deals with max-flow min-cut problems of Strang and Iri with unbounded or noncontinuous capacity functions. It is proved that, in such problems, max-flow min-cut theorems may fail to hold.  相似文献   

6.
In this paper we are concerned with the approximate solution of time-optimal control problems in a nonreflexive Banach SpaceE by sequences of similar problems in Banach spacesE n which are assumed to approximateE in a fairly general sense. The problems under consideration are such that the solution operator of the associated evolution equation is a strongly continuous holomorphic contraction semigroup and the class of controls is taken from the dual of the Phillips adjoint space with respect to the infinitesimal generator of that semigroup. The main object is to establish convergence of optimal controls, transition times and corresponding trajectories of the approximating control problems which can be done by means of some results from the theory of approximation of semigroups of operators. Finally, these abstract convergence results will be applied to time-optimal control problems arising from heat transfer and diffusion processes.Research supported in part by the Deutsche Forschungsgemeinschaft (DFG)  相似文献   

7.
Changa  M. E. 《Mathematical Notes》2003,73(3-4):389-401
We study primes in a special set E which is naturally described by the fractional part of pa, where a<1 is a noninteger. An asymptotic formula with power lowering in the remainder of the trigonometric sum over primes from the set E is obtained. We study several applications of this result to problems of the distribution of primes from E in arithmetic progressions and to additive problems with primes from E.  相似文献   

8.
The genetic algorithm (GA) paradigm has attracted considerable attention as a promising heuristic approach for solving optimization problems. Much of the development has related to problems of optimizing functions of continuous variables, but recently there have been several applications to problems of a combinatorial nature. What is often found is that GAs have fairly poor performance for combinatorial problems if implemented in a naive way, and most reported work has involved somewhat ad hoc adjustments to the basic method. In this paper, we will describe a general approach which promises good performance for a fairly extensive class of problems by hybridizing the GA with existing simple heuristics. The procedure will be illustrated mainly in relation to the problem ofbin-packing, but it could be extended to other problems such asgraph partitioning, parallel-machine scheduling andgeneralized assignment. The method is further extended by usingproblem size reduction hybrids. Some results of numerical experiments will be presented which attempt to identify those circumstances in which these heuristics will perform well relative to exact methods. Finally, we discuss some general issues involving hybridization: in particular, we raise the possibility of blending GAs with orthodox mathematical programming procedures.  相似文献   

9.
A numerical method for linear quadratic optimal control problems with pure state constraints is analyzed. Using the virtual control concept introduced by Cherednichenko et al. (Inverse Probl. 24:1–21, 2008) and Krumbiegel and R?sch (Control Cybern. 37(2):369–392, 2008), the state constrained optimal control problem is embedded into a family of optimal control problems with mixed control-state constraints using a regularization parameter α>0. It is shown that the solutions of the problems with mixed control-state constraints converge to the solution of the state constrained problem in the L 2 norm as α tends to zero. The regularized problems can be solved by a semi-smooth Newton method for every α>0 and thus the solution of the original state constrained problem can be approximated arbitrarily close as α approaches zero. Two numerical examples with benchmark problems are provided.  相似文献   

10.
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.  相似文献   

11.
This paper represents the second part of a study concerning the so-called G-multiobjective programming. A new approach to duality in differentiable vector optimization problems is presented. The techniques used are based on the results established in the paper: On G-invex multiobjective programming. Part I. Optimality by T.Antczak. In this work, we use a generalization of convexity, namely G-invexity, to prove new duality results for nonlinear differentiable multiobjective programming problems. For such vector optimization problems, a number of new vector duality problems is introduced. The so-called G-Mond–Weir, G-Wolfe and G-mixed dual vector problems to the primal one are defined. Furthermore, various so-called G-duality theorems are proved between the considered differentiable multiobjective programming problem and its nonconvex vector G-dual problems. Some previous duality results for differentiable multiobjective programming problems turn out to be special cases of the results described in the paper.  相似文献   

12.
We consider boundary value problems and transmission problems for strongly elliptic second-order systems with boundary conditions on a compact nonclosed Lipschitz surface S with Lipschitz boundary. The main goal is to find conditions for the unique solvability of these problems in the spaces H s , the simplest L 2-spaces of the Sobolev type, with the use of potential type operators on S. We also discuss, first, the regularity of solutions in somewhat more general Bessel potential spaces and Besov spaces and, second, the spectral properties of problems with spectral parameter in the transmission conditions on S, including the asymptotics of the eigenvalues.  相似文献   

13.
In this paper the main focus is on a stability concept for solutions of a linear complementarity problem. A solution of such a problem is robust if it is stable against slight perturbations of the data of the problem. Relations are investigated between the robustness, the nondegenerateness and the isolatedness of solutions. It turns out that an isolated nondegenerate solution is robust and also that a robust nondegenerate solution is isolated. Since the class of linear complementarity problems with only robust solutions or only nondegenerate solutions is not an open set, attention is paid to Garcia's classG n of linear complementarity problems. The nondegenerate problems inG n form an open set.  相似文献   

14.
Due to their fundamental nature and numerous applications, sphere constrained polynomial optimization problems have received a lot of attention lately. In this paper, we consider three such problems: (i) maximizing a homogeneous polynomial over the sphere; (ii) maximizing a multilinear form over a Cartesian product of spheres; and (iii) maximizing a multiquadratic form over a Cartesian product of spheres. Since these problems are generally intractable, our focus is on designing polynomial-time approximation algorithms for them. By reducing the above problems to that of determining the L 2-diameters of certain convex bodies, we show that they can all be approximated to within a factor of Ω((log n/n) d/2–1) deterministically, where n is the number of variables and d is the degree of the polynomial. This improves upon the currently best known approximation bound of Ω((1/n) d/2–1) in the literature. We believe that our approach will find further applications in the design of approximation algorithms for polynomial optimization problems with provable guarantees.  相似文献   

15.
The problems under study are connected with the choice of a vector subset from a given finite set of vectors in the Euclidean space ℝ k . The sum norm and averaged square of the sumnorm are considered as the target functions (to be maximized). The optimal combinatorial algorithms with time complexity O(k 2 n 2k ) are developed for these problems. Thus, the polynomial solvability of these problems is proved for k fixed.  相似文献   

16.
The maximum entropy covariance matrix is positive definite even when the number of variables p exceeds the sample size n. However, the inverse of this matrix can have stability problems when p is close to n, although these problems tend to disappear as p increases beyond n. We analyze such problems using the variance of the latent roots in a particular metric as a condition number.  相似文献   

17.
In many discrete location problems, a given number s of facility locations must be selected from a set of m potential locations, so as to optimize a predetermined fitness function. Most of such problems can be formulated as integer linear optimization problems, but the standard optimizers only are able to find one global optimum. We propose a new genetic-like algorithm, GASUB, which is able to find a predetermined number of global optima, if they exist, for a variety of discrete location problems. In this paper, a performance evaluation of GASUB in terms of its effectiveness (for finding optimal solutions) and efficiency (computational cost) is carried out. GASUB is also compared to MSH, a multi-start substitution method widely used for location problems. Computational experiments with three types of discrete location problems show that GASUB obtains better solutions than MSH. Furthermore, the proposed algorithm finds global optima in all tested problems, which is shown by solving those problems by Xpress-MP, an integer linear programing optimizer (21). Results from testing GASUB with a set of known test problems are also provided.  相似文献   

18.
The multi-duality of the nonlinear variational problem inf J(u, Λu) is studied for minimal surfaces-type problems. By using the method developed by Gao and Strang [1], the Fenchel-Rockafellar's duality theory is generalized to the problems with affine operator Λ. Two dual variational principles are established for nonparametric surfaces with constant mean curvature. We show that for the same primal problem, there may exist different dual problems. The primal problem may or may not possess a solution, whereas each dual problem possesses a unique solution. An evolutionary method for solving the nonlinear optimal-shape design problem is presented with numerical results.  相似文献   

19.
The tractability of multivariate problems has usually been studied only for the approximation of linear operators. In this paper we study the tractability of quasilinear multivariate problems. That is, we wish to approximate nonlinear operators Sd(·,·) that depend linearly on the first argument and satisfy a Lipschitz condition with respect to both arguments. Here, both arguments are functions of d variables. Many computational problems of practical importance have this form. Examples include the solution of specific Dirichlet, Neumann, and Schrödinger problems. We show, under appropriate assumptions, that quasilinear problems, whose domain spaces are equipped with product or finite-order weights, are tractable or strongly tractable in the worst case setting.This paper is the first part in a series of papers. Here, we present tractability results for quasilinear problems under general assumptions on quasilinear operators and weights. In future papers, we shall verify these assumptions for quasilinear problems such as the solution of specific Dirichlet, Neumann, and Schrödinger problems.  相似文献   

20.
This paper is concerned with classical concave cost multi-echelon production/inventory control problems studied by W. Zangwill and others. It is well known that the problem with m production steps and n time periods can be solved by a dynamic programming algorithm in O(n 4 m) steps, which is considered as the fastest algorithm for solving this class of problems. In this paper, we will show that an alternative 0–1 integer programming approach can solve the same problem much faster particularly when n is large and the number of 0–1 integer variables is relatively few. This class of problems include, among others problem with set-up cost function and piecewise linear cost function with fewer linear pieces. The new approach can solve problems with mixed concave/convex cost functions, which cannot be solved by dynamic programming algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号