首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the geometrical and electronic structures of open-end single-walled carbon nanotubes (SWNTs) having chemically modified tips, using semi-empirical AM1 and density functional theory methods. The hydroxyl (–OH), carboxyl (–COOH) and amide (–CONH2) functional groups were used to saturate the open-ends of nanotubes. The effects of functional groups were studied by comparison with the pristine tubes, of which the tubular lengths vary from two to ten unit-cells (40 Å). The results show that the C–C bond lengths of all model tubes are only slightly different, and the behavior of converging bond lengths in COOH– and CONH2-SWNTs is very similar to the pristine tube. Tip functionalization alters the frontier orbitals of the pristine tube, but these effects seem to rapidly decrease as the tubule becomes longer. In general, it can be concluded that the geometrical and electronic structures of pristine tubes after tube-end “full” functionalization will be preserved, hence supporting that more real-world “partially” functionalized SWNTs can be used in the same way as the pristine version in most application areas.  相似文献   

2.
We have developed a new method for aligning individual suspended single-walled carbon nanotubes (SWNTs) using a combination of the ac electrophoresis technique and electron beam lithography. A poly(methyl methacrylate) (PMMA) underpinning was used in the region between the Au electrodes to prevent the carbon nanotube (CNT) from falling down on to the substrate. O2 plasma ashing was used to control the height of the underpinning PMMA layer so that it was same as that of the pre-defined electrodes. The biggest advantage of this method is that one can easily align the suspended nanostructure in a controllable manner. This method can also be applied to making suspended structures of organic materials that are sensitive to acid treatment. We measured the temperature-dependent I–V characteristics of the suspended SWNTs and found that most of the aligned SWNTs were metallic. PACS 61.46.+w; 73.63.Fg; 81.07.De; 81.16.Rf; 85.35.Kt  相似文献   

3.
In a system of N interacting single-level quantum dots (QDs), we study the relaxation dynamics and the current–voltage characteristics determined by symmetry properties of the QD arrangement. Different numbers of dots, initial charge configurations, and various coupling regimes to reservoirs are considered. We reveal that effective charge trapping occurs for particular regimes of coupling to the reservoir when more than two dots form a ring structure with the CN spatial symmetry. We reveal that the effective charge trapping caused by the CN spatial symmetry of N coupled QDs depends on the number of dots and the way of coupling to the reservoirs. We demonstrate that the charge trapping effect is directly connected with the formation of dark states, which are not coupled to reservoirs due to the system spatial symmetry CN. We also reveal the symmetry blockade of the tunneling current caused by the presence of dark states.  相似文献   

4.
The nucleation pathway for single-wall carbon nanotubes on a metal surface is demonstrated by a series of total energy calculations using density functional theory. Incorporation of pentagons at an early stage of nucleation is energetically favorable as they reduce the number of dangling bonds and facilitate curvature of the structure and bonding to the metal. In the presence of the metal surface, nucleation of a closed cap or a capped single-wall carbon nanotube is overwhelmingly favored compared to any structure with dangling bonds or to a fullerene.  相似文献   

5.
Towards the development of a useful mechanism for hydrogen storage, we have studied the hydrogenation of single-walled carbon nanotubes with atomic hydrogen using core-level photoelectron spectroscopy and x-ray absorption spectroscopy. We find that atomic hydrogen creates C-H bonds with the carbon atoms in the nanotube walls, and such C-H bonds can be completely broken by heating to 600 degrees C. We demonstrate approximately 65 +/- 15 at % hydrogenation of carbon atoms in the single-walled carbon nanotubes, which is equivalent to 5.1 +/- 1.2 wt % hydrogen capacity. We also show that the hydrogenation is a reversible process.  相似文献   

6.
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1–1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.  相似文献   

7.
We present an experimental investigation on the scaling of resistance in individual single-walled carbon nanotube devices with channel lengths that vary 4 orders of magnitude on the same sample. The electron mean free path is obtained from the linear scaling of resistance with length at various temperatures. The low temperature mean free path is determined by impurity scattering, while at high temperature, the mean free path decreases with increasing temperature, indicating that it is limited by electron-phonon scattering. An unusually long mean free path at room temperature has been experimentally confirmed. Exponentially increasing resistance with length at extremely long length scales suggests anomalous localization effects.  相似文献   

8.
Ester-functionalized soluble single-walled carbon nanotubes   总被引:2,自引:0,他引:2  
We report the preparation of soluble ester- functionalized single-wall carbon nanotubes (sSWNT-COO(CH2)17CH3). By use of solution phase IR spectroscopy we are able to compare the ratio of the carbon atoms in the SWNT backbone to the carbon atoms in the ester and amide functionalities of s-SWNTs. Received: 16 July 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

9.
Single-walled carbon nanotubes (SWNTs) are successfully dispersed in two conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) and poly[2-methoxy-5- (2’-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEHPPV) solutions. Steady-state and time-resolved photoluminescence spectroscopy in the near-infrared and visible spectral regions are used to study the interaction of the dispersed carbon nanotube and the wrapped polymer in the nano-hybrids. The SWNTs infrared emission is the signatures of the separation of single semiconducting tubes, the lifetime of the photoluminescence of these tubes is bi-exponential with the first component varying from 6 ps (in MEHPPV wrapped SWNTs) to 14 ps (in PFO wrapped SWNTs), while the second component of the decay for all samples is in the range of 30-40 ps, revealing the intrinsic lifetime of the SWNTs. The study of the photoluminescence of the nano-hybrids in the visible spectral range shows, in the case of the PFO, a relatively strong quenching, the photoluminescence lifetime for the hybrid is more than 100 ps shorter than the one of the pristine polyfluorene solution. For the MEHPPV-SWNT hybrid an opposite behavior is revealed with the photoluminescence lifetime surprisingly longer than the polymer solution. The possible mechanism for the interaction of the two conjugated polymers and the SWNTs is discussed in terms of their electronic band structure.  相似文献   

10.
Flame synthesis of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Flames offer potential for synthesis of carbon nanotubes in large quantities at considerably lower costs than that of other methods currently available. This study aims to examine conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single-walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/15 mol% argon flame operated at 6.7 kPa with Fe(CO)5 vapor used as a source of metallic catalyst necessary for nanotube growth. Thermophoretic sampling and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving a resolution of formation dynamics within the flame system. Catalyst particle formation and growth is observed to dominate the immediate post-flame region (10–40 mm HAB). Nanotubes were observed to be present after 40 mm HAB with nanotube inception occurring as early as 30 mm HAB. Between 40 and 70 mm HAB, nanotubes are observed to coalesce into clusters. A nanotube formation ‘window’ is evident with formation limited to fuel equivalence ratios between 1.5 and 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between these lower and upper limits. High-resolution TEM and Raman spectroscopy revealed nanotube bundles with each nanotube being single-walled with diameters between 0.9 and 1.5 nm.  相似文献   

11.
肖杨  颜晓红  曹觉先  丁建文 《物理学报》2003,52(7):1720-1725
通过五步旋转操作方便地得到了不同位置原子间的力常数矩阵,从而可以使对各种不同类型管的声子谱的计算变得简便. 计算表明,非螺旋的扶手椅型(n, n)管与锯齿型(n, 0)管的非简并和二重简并模式数分别为12和6(n-1),这与从群论等方法所得结果相符. 关键词: 纳米碳管 声子谱 振动模式密度 动力学矩阵  相似文献   

12.
The action of single-walled carbon nanotubes (SWCNTs) on cells of the genetically engineered K12 TG1 strain of Escherichia coli, which have a luminescent phenotype generated by the cloning of the lux operon of the native luminescent marine bacterium Photobacterium leiognathi into the strain, is studied in this work. The survival rate of the bacterial cells and their morphological changes are studied by means of atomic force microscopy as a function of their exposure to SWCNTs.  相似文献   

13.
We have carried out magneto-absorption and magneto-photoluminescence experiments on micelle-suspended single-walled carbon nanotubes in magnetic fields up to 45 T. Chirality-assigned spectral peaks exhibit significant changes with increasing magnetic field, which can be quantitatively explained in terms of the theoretically predicted splittings and redshifts of the band edge due to the Aharonov–Bohm effect combined with the magnetic-field-induced alignment of the nanotubes.  相似文献   

14.
This paper reports on the results of the theoretical investigation of the piezoresistive effect in single-walled carbon nanotubes of two structural modifications: arm-chair type and zig-zag type. The variation in the band gap of semiconducting nanotubes under the influence of the compressive and tensile deformations has been analyzed. The main quantitative characteristic of the piezoresistive effect—the longitudinal component of the elastic conductivity tensor—has been calculated, and its dependence on the diameter of semiconducting nanotubes has been shown. The variants of practical implementation of the effect under study have been proposed.  相似文献   

15.
Using classical molecular dynamics and empirical potentials, we show that the axial deformation of single-walled carbon nanotubes is coupled to their torsion. The axial-strain-induced torsion is limited to chiral nanotubes-graphite sheets rolled around an axis that breaks its symmetry. Small strain behavior is consistent with chirality and curvature-induced elastic anisotropy (CCIEA)-carbon nanotube rotation is equal and opposite in tension and compression, and decreases with curvature and chirality. The large-strain compressive response is remarkably different. The coupling progressively decreases, in contrast to the tensile case, and changes its sign at a critical compressive strain. Thereafter, it untwists with increasing axial strain and then rotates in the opposite direction, i.e., the same sense as under tension. This suggests that the response is now dictated by a combination of nonlinear elasticity and CCIEA.  相似文献   

16.
何彩霞  简粤  祁秀英  薛具奎 《中国物理 B》2014,23(2):25202-025202
Parametric instabilities induced by the coupling excitation between the high frequency quantum Langmuir waves and the low frequency quantum ion-acoustic waves in single-walled carbon nanotubes are studied with a quantum Zakharov model. By linearizing the quantum hydrodynamic equations, we get the dispersion relations for the high frequency quantum Langmuir wave and the low frequency quantum ion-acoustic wave. Using two-time scale method, we obtain the quantum Zaharov model in the cylindrical coordinates. Decay instability and four-wave instability are discussed in detail. It is shown that the carbon nanotube's radius, the equilibrium discrete azimuthal quantum number, the perturbed discrete azimuthal quantum number, and the quantum parameter all play a crucial role in the instabilities.  相似文献   

17.
18.
Yoo S  Jung Y  Lee DS  Han WT  Oh K  Murakami Y  Edamura T  Maruyama S 《Optics letters》2005,30(23):3201-3203
Optical anistropy at optical communication wavelength was observed in films of vertically aligned single-walled carbon nanotubes (SWNTs). We report the control of both the polarization state and transmission of incoming light at 1550 nm by azimuthal and axial tilting of SWNT film about its aligned axis. The experiments reveal that the polarization state of light is susceptible to the azimuthal angle of the aligned direction of a SWNT having semiconductor characteristics and the intensity of the output beam after SWNT film shows cosine function dependence on the axial tilting angle.  相似文献   

19.
A novel one-step process using potassium persulfate (KPS) as oxidant is proposed in this paper to prepare water-soluble single-walled carbon nanotubes (SWNTs). The process without the need for organic solvents and acids is a low-cost, eco-friendly, facile method. Morphology observation by atomic force microscopy (AFM) indicates that the KPS-treated SWNTs were effectively debundled without obvious shortening in their length. The functional groups and thermal stability of the treated SWNTs were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). XPS results show that several functional groups such as potassium carboxylate (-COOK), carbonyl (-CO) and hydroxyl (-C-OH) groups were formed on the surfaces of the SWNTs, while the TGA results reveal that the quantity of the functional groups can reach to approximately 20%.  相似文献   

20.
This paper examines the nonlinear size-dependent behaviour of single-walled carbon nanotubes (SWCNTs) based on the von-Karman nonlinearity and the nonlocal elasticity theory capable of predicting size effects. To this end, based on Hamilton’s principle in the framework of the nonlocal Euler–Bernoulli beam theory, the equation of motion and associated boundary conditions are derived. Then, with the aid of a high-dimensional Galerkin scheme, the nonlinear partial differential equation of motion of the SWCNT is recast into a reduced-order model. The dynamic response of the system is then investigated for two different types of excitation, namely primary and superharmonic excitations. Eventually, the effect of the slenderness ratio, forcing amplitude, and excitation frequency on the motion characteristics of the system is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号