首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
INTRODUCTION: Oxidative damage to DNA in vivo can lead to mutations and cancer. DNA damage and repair studies have not yet revealed whether permanent oxidative lesions are generated by charges migrating over long distances. Both photoexcited *Rh(III) and ground-state Ru(III) intercalators were previously shown to oxidize guanine bases from a remote site in oligonucleotide duplexes by DNA-mediated electron transfer. Here we examine much longer charge-transport distances and explore the sensitivity of the reaction to intervening sequences. RESULTS: Oxidative damage was examined in a series of DNA duplexes containing a pendant intercalating photooxidant. These studies revealed a shallow dependence on distance and no dependence on the phasing orientation of the oxidant relative to the site of damage, 5'-GG-3'. The intervening DNA sequence has a significant effect on the yield of guanine oxidation, however. Oxidation through multiple 5'-TA-3' steps is substantially diminished compared to through other base steps. We observed intraduplex guanine oxidation by tethered *Rh(III) and Ru(III) over a distance of 200 A. The distribution of oxidized guanine varied as a function of temperature between 5 and 35 degrees C, with an increase in the proportion of long-range damage (> 100 A) occurring at higher temperatures. CONCLUSIONS: Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.  相似文献   

3.
We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.  相似文献   

4.
Spectroscopic techniques are employed to probe relationships between structural dynamics and charge transfer (CT) efficiency in DNA duplexes and DNA:RNA hybrids containing photoexcited 2-aminopurine (Ap). To better understand the variety of interactions and reactions, including CT, between Ap and DNA, the fluorescence behavior of Ap is investigated in a full series of redox-inactive as well as redox-active assemblies. Thus, Ap is developed as a dual reporter of structural dynamics and base-base CT reactions in nucleic acid duplexes. CD, NMR, and thermal denaturation profiles are consistent with the family of DNA duplexes adopting a distinct conformation versus the DNA:RNA hybrids. Fluorescence measurements establish that the d(A)-r(U) tract of the DNA:RNA hybrid exhibits enhanced structural flexibility relative to that of the d(A)-d(T) tract of the DNA duplexes. The yield of CT from either G or 7-deazaguanine (Z) to Ap in the assemblies was determined by comparing Ap emission in redox-active G- or Z-containing duplexes to otherwise identical duplexes in which the G or Z is replaced by inosine (I), the redox-inactive nucleoside analogue. Investigations of CT not only demonstrate efficient intrastrand base-base CT in the DNA:RNA hybrids but also reveal a distance dependence of CT yield that is more shallow through the d(A)-r(U) bridge of the A-form DNA:RNA hybrids than through the d(A)-d(T) bridge of the B-form DNA duplexes. The shallow distance dependence of intrastrand CT in DNA:RNA hybrids correlates with the increased conformational flexibility of bases within the hybrid duplexes. Measurements of interstrand base-base CT provide another means to distinguish between the A- and B-form helices. Significantly, in the A-form DNA:RNA hybrids, a similar distance dependence is obtained for inter- and intrastrand reactions, while, in B-DNA, a more shallow distance dependence is evident with interstrand CT reactions. These observations are consistent with evaluations of intra- and interstrand base overlap in A- versus B-form duplexes. Overall, these data underscore the sensitivity of CT chemistry to nucleic acid structure and structural dynamics.  相似文献   

5.
A direct comparison of DNA charge transport (CT) with different photooxidants has been made. Photooxidants tested include the two metallointercalators, Rh(phi)(2)(bpy')(3+) and Ru(phen)(bpy')(dppz)(2+), and three organic intercalators, ethidium (Et), thionine (Th), and anthraquinone (AQ). CT has been examined through a DNA duplex containing an A(6)-tract intervening between two 5'-CGGC-3' sites with each of the photooxidants covalently tethered to one end of the DNA duplex. CT is assayed both through determination of the yield of oxidative guanine damage and, in derivative DNA assemblies, by analysis of the yield of a faster oxidative trapping reaction, ring opening of N(2)-cyclopropylguanine (d(CP)G) within the DNA duplex. We find clear differences in oxidative damage ratios at the distal versus proximal 5'-CGGC-3' sites depending upon the photooxidant employed. Importantly, nondenaturing gel electrophoresis data demonstrate the absence of any DNA aggregation by the DNA-bound intercalators. Hence, differences seen with assemblies containing various photooxidants cannot be attributed to differential aggregation. Comparisons in assemblies using different photooxidants thus reveal characteristics of the photooxidant as well as characteristics of the DNA assembly. In the series examined, the lowest distal/proximal DNA damage ratios are obtained with Ru and AQ, while, for both Rh and Et, high distal/proximal damage ratios are found. The oxidative damage yields vary in the order Ru > AQ > Rh > Et, and photooxidants that produce higher distal/proximal damage ratios have lower yields. While no oxidative DNA damage is detected using thionine as a photooxidant, oxidation is evident using the faster cyclopropylguanosine trap; here, a complex distance dependence is found. Differences observed among photooxidants as well as the complex distance dependence are attributed to differences in rates of back electron transfer (BET). Such differences are important to consider in developing mechanistic models for DNA CT.  相似文献   

6.
Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subsequent formation of the methylindole radical cation were observed at a distance of over 30 A at rates >/=107 s-1 in assemblies containing no guanine bases intervening the ruthenium intercalator and GMG oxidation site. Radical yield was, however, strikingly sensitive to an intervening base mismatch; no significant methylindole radical formation was evident with an intervening AA mismatch. Also critical is the sequence at the injection site; this sequence determines initial hole localization and hence the probability of hole propagation. With guanine rather than inosine near the site of hole injection, decreased yields of radicals and long-range oxidative damage are observed. The presence of the low-energy guanine site in this case serves to localize the hole and therefore diminish charge transport through the base pair stack.  相似文献   

7.
No benefit from base stacking is observed for rates of electron transfer in DNA. This conclusion was drawn from experiments with a new DNA assay in which a radical cationic site, generated by strand cleavage, can be reduced by the guanine bases in the same DNA (the electron transfer is indicated by arrows in the diagram). The distance dependence of this electron transfer step is determined by the chemical yield of the reduction product.  相似文献   

8.
Charge migration through the DNA base stack has been probed both spectroscopically, to observe the formation of radical intermediates, and biochemically, to assess irreversible oxidative DNA damage. Charge transport and radical trapping were examined in DNA assemblies in the presence of a site-specifically bound methyltransferase HhaI mutant and an intercalating ruthenium photooxidant using the flash-quench technique. The methyltransferase mutant, which can flip out a base and insert a tryptophan side chain within the DNA cavity, is found to activate long-range hole transfer through the base pair stack. Protein-dependent DNA charge transport is observed over 50 A with guanine radicals formed >10(6) s(-1); hole transport through DNA over this distance is not rate-limiting. Given the time scale and distance regime, such protein-dependent DNA charge transport chemistry requires consideration physiologically.  相似文献   

9.
Here we examine the photooxidation of two kinetically fast electron hole traps, N4-cyclopropylcytosine (CPC) and N2-cyclopropylamine-guanosine (CPG), incorporated in DNA duplexes of various sequence using different photooxidants. DNA oxidation studies are carried out either with noncovalently bound [Ru(phen)(dppz)(bpy')]3+ (dppz = dipyridophenazine) and [Rh(phi)2(bpy)]3+ (phi = phenanthrenequinone diimine) or with anthraquinone tethered to DNA. Because the cyclopropylamine-substituted bases decompose rapidly upon oxidation, their efficiency of decomposition provides a measure of relative hole localization. Consistent with a higher oxidation potential for CPC versus CPG in DNA, CPC decomposes with photooxidation by [Rh(phi)2(bpy)]3+, while CPG undergoes ring-opening both with photoexcited [Rh(phi)2(bpy)]3+ and with [Ru(phen)(dppz)(bpy')]3+. Anthraquinone-modified DNA assemblies of identical base composition but different base sequence are also probed. Single and double base substitutions within adenine tracts modulate CPC decomposition. In fact, the entire sequence within the DNA assembly is seen to govern CPC oxidation, not simply the bases intervening between CPC and the tethered photooxidant. These data are reconciled in the context of a mechanistic model of conformationally gated charge transport through delocalized DNA domains. Photooxidations of anthraquinone-modified DNA assemblies containing both CPC and CPG, but with varied distances separating the modified bases, point to a domain size of at least three bases. Our model for DNA charge transport is distinguished from polaron models. In our model, delocalized domains within the base pair stack form transiently based upon sequence-dependent DNA structure and dynamics. Given these results, DNA charge transport is indeed remarkably sensitive to DNA sequence and structure.  相似文献   

10.
Charge hopping in DNA.   总被引:1,自引:0,他引:1  
The efficiency of charge migration through stacked Watson-Crick base pairs is analyzed for coherent hole motion interrupted by localization on guanine (G) bases. Our analysis rests on recent experiments, which demonstrate the competition of hole hopping transitions between nearest neighbor G bases and a chemical reaction of the cation G(+) with water. In addition, it has been assumed that the presence of units with several adjacent stacked G bases on the same strand leads to the additional vibronic relaxation process (G(+)G...G) --> (GG...G)(+). The latter may also compete with the hole transfer from (G(+)G...G) to a single G site, depending on the relative positions of energy levels for G(+) and (G(+)G...G). A hopping model is proposed to take the competition of these three rate steps into account. It is shown that the model includes two important limits. One corresponds to the situation where the charge relaxation inside a multiple guanine unit is faster than hopping. In this case hopping is terminated by several adjacent G bases located on the same strand, as has been observed for the GGG triple. In the opposite, slow relaxation limit the GG...G unit allows a hole to migrate further in accord with experiments on strand cleavage exploiting GG pairs. We demonstrate that for base pair sequences with only the GGG triple, the fast relaxation limit of our model yields practically the same sequence- and distance dependencies as measurements, without invoking adjustable parameters. For sequences with a certain number of repeating adenine:thymine pairs between neighboring G bases, our analysis predicts that the hole transfer efficiency varies in inverse proportion to the sequence length for short sequences, with change to slow exponential decay for longer sequences. Calculations performed within the slow relaxation limit enable us to specify parameters that provide a reasonable fit of our numerical results to the hole migration efficiency deduced from experiments with sequences containing GG pairs. The relation of the results obtained to other theoretical and experimental studies of charge transfer in DNA is discussed. We propose experiments to gain a deeper insight into complicated kinetics of charge-transfer hopping in DNA.  相似文献   

11.
In this study we report analytical solutions for both time-dependent and steady-state problems of unbiased charge transfer through a regular DNA sequence via a hopping mechanism. The phenomenon is treated as a diffusion of charge in a one-dimensional array of equally spaced and energetically equivalent temporary trapping sites. The solutions take into account the rates of charge hopping (k), side reactions (k(r)), and charge transfer to a terminal charge acceptor (k(t)). A detailed analysis of the time-dependent problem is performed for the diffusion-controlled regime, i.e., under the assumption that k(t) > k, which is also equivalent to the fast relaxation limit of charge trapping. The analysis shows that the kinetics of charge hopping through DNA is always multiexponential, but under certain circumstances it can be asymptotically approximated by a single-exponential term. In that case, the efficiency of charge transfer can be characterized by a single rate constant k(CT) = 1.23kN(-2) + k(r), where N is the DNA length expressed in terms of the number of equidistant trapping sites and k(r) is the rate of competing chemical processes. The absolute yield of charge transfer under steady-state conditions in general is obtained as Y(infinity) = omega [alpha sinh(alphaN) + omega cosh(alphaN)](-1), where alpha = (2k(r)/k)(1/2) and omega = 2k(t)/k. For the diffusion-controlled regime and small N, in particular, it turns into the known "algebraic" dependence Y(infinity) = [1 + (k(r)/k)N(2)](-1). At large N the solution is asymptotically exponential with the parameter alpha mimicking the tunneling parameter beta in agreement with earlier predictions. Similar equations and distance dependencies have also been obtained for the damage ratios at the intermediate and terminal trapping sites in DNA. The nonlinear least-squares fit of one of these equations to experimental yields of guanine oxidation available from the literature returns kinetic parameters that are in reasonable agreement with those obtained by Bixon et al. [Proc. Natl. Acad. Sci. U.S.A.1999, 96, 11713-11716] by numerical simulations, suggesting that these two approaches are physically equivalent.  相似文献   

12.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

13.
A kinetic study of the single-step hole transfer in DNA was performed by measuring time-resolved transient absorption. DNA molecules with various sequences were designed and conjugated with naphthalimide (NI) and phenothiazine (PTZ) to investigate the sequence and distance dependence of the single-step hole transfer between guanines (Gs). Hole injection into DNA was accomplished by excitation of the NI site with a 355 nm laser pulse, and the kinetics of the hole-transfer process were investigated by monitoring the transient absorption of the PTZ radical cation (PTZ.+). Kinetic analysis of the time profile of PTZ.+ based on the kinetic model showed that the distance dependence of the hole-transfer process was significantly influenced by the DNA sequence. Results of temperature- and isotope-effect experiments demonstrated that the activation energy increased as the number of bridge bases separating the Gs increased. This is because of the distance-dependent reorganization energy and contribution of the proton-transfer process to the hole transfer in DNA.  相似文献   

14.
Investigation of hole or excess electron hopping in DNA is mostly performed based on yield studies, in which an injector modified DNA duplex is irradiated to continuously inject either holes or electrons into the duplex. Observed is a chemical reaction of a "probe" molecule, which can be either one of the two purine bases or a different trap molecule positioned at various distances. The next step in the field will be the direct time resolution of the hole or electron transfer kinetics in DNA. Herein we describe the development of defined donor-DNA-acceptor systems, with properties that may allow time resolved electron and hole transfer studies in stably folded DNA structures.  相似文献   

15.
From previous thermal and photoinduced charge-transfer reactions in duplex DNA there is accumulative evidence for an attenuation parameter beta of the distance dependence in the range 0.6-0.8 A(-1), with the exception of one specific system exhibiting beta = 1.5 A(-1) which is reinvestigated in this paper. Femtosecond to nanosecond time-resolved pump-probe spectroscopy has been used to follow photoinduced charge-shift dynamics in DNA duplexes containing a covalently appended, protonated 9-alkylamino-6-chloro-2-methoxyacridine chromophore. This acridine derivative (X+) resides in the DNA duplex at a specific abasic site, which is highly defined as reflected in the monoexponentiality of the kinetics. In the presence of only neighboring A:T base pairs, no charge transfer occurs within the excited-state lifetime (18 ns) of the chromophore. However, the presence of a guanine nucleobase as either a nearest neighbor or with one interspersed A:T base pair does result in fluorescence quenching. In the case of nearest neighbors, the intermediate radical state X* is formed within 4 ps and decays on the 30 ps time scale. Placing one A:T base pair between the X+ and guanine slows down the forward transfer rate by 3 orders of magnitude, corresponding to an apparent beta value of >2.0 A(-1). This dramatic decrease in the rate is due to a change in charge-transfer mechanism from a (nearly) activationless to a thermally activated regime in which the forward transfer is slower than the back transfer and the X* state is no longer observed. These observations indicate that the distance dependence of charge injection in the X+-labeled DNA duplex is not solely caused by a decrease in electronic couplings but also by a concomitant increase of the activation energy with increasing distance. This increase in activation energy may result from the loss of driving force due to excited-state relaxation competing with charge transfer, or reflect distance-dependent changes in the energetics, predominantly of the low-frequency reorganization energy in this charge-shift reaction, on purely electrostatic grounds. To test the hypothesis of distance-dependent activation energy, guanine has been replaced by 7-deazaguanine, its easier-to-oxidize purine analogue. In these duplexes, a similar change of charge-transfer mechanism is found. However, consistent with an a priori larger driving force this change occurs at a larger donor-acceptor separation than in the X+-guanine systems. Independent of the detailed contributions to the distance-dependent activation energy, this phenomenon illustrates the complex nature of experimental beta values.  相似文献   

16.
Oxidatively generated DNA damage induced by the aromatic radical cation of the pyrene derivative 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (BPT), and by carbonate radicals anions, was monitored from the initial one-electron transfer, or hole injection step, to the formation of hot alkali-labile chemical end-products monitored by gel electrophoresis. The fractions of BPT molecules bound to double-stranded 20-35-mer oligonucleotides with noncontiguous guanines G and grouped as contiguous GG and GGG sequences were determined by a fluorescence quenching method. Utilizing intense nanosecond 355 nm Nd:YAG laser pulses, the DNA-bound BPT molecules were photoionized to BPT*+ radicals by a consecutive two-photon ionization mechanism. The BPT*+ radicals thus generated within the duplexes selectively oxidize guanine by intraduplex electron-transfer reactions, and the rate constants of these reactions follow the trend 5'-..GGG.. > 5'-..GG.. > 5'-..G... In the case of CO3*- radicals, the oxidation of guanine occurs by intermolecular collision pathways, and the bimolecular rate constants are independent of base sequence context. However, the distributions of the end-products generated by CO3*- radicals, as well as by BPT*+, are base sequence context-dependent and are greater than those in isolated guanines at the 5'-G in 5'-...GG... sequences, and the first two 5'- guanines in the 5'-..GGG sequences. These results help to clarify the conditions that lead to a similar or different base sequence dependence of the initial hole injection step and the final distribution of oxidized, alkali-labile guanine products. In the case of the intermolecular one-electron oxidant CO3*-, the rate constant of hole injection is similar for contiguous and isolated guanines, but the subsequent equilibration of holes by hopping favors trapping and product formation at contiguous guanines, and the sequence dependence of these two phenomena are not correlated. In contrast, in the case of the DNA-bound oxidant BPT*+, the hole injection rate constants, as well as hole equilibration, exhibit a similar dependence on base sequence context, and are thus correlated to one another.  相似文献   

17.
We have designed and synthesized DNA duplexes containing 5-dimethylaminocytosine ((DMA)C) to investigate the effects of C(5)-substituted cytosine bases on the transfer and trapping of positive charge (holes) in DNA duplexes. Fluorescence quenching experiments revealed that a (DMA)C base is more readily one-electron oxidized into a radical cation intermediate as compared with other natural nucleobases. Upon photoirradiation of the duplexes containing (DMA)C, the photosensitizer-injected hole migrated through the DNA bases and was trapped efficiently at the (DMA)C sites, where an enhanced oxidative strand cleavage occurred by hot piperidine treatment. The (DMA)C radical cation formed by hole transfer may undergo specific hydration and subsequent addition of molecular oxygen, thereby leading to its decomposition followed by a predominant strand cleavage at the (DMA)C site. This remarkable property suggests that the modified cytosine (DMA)C can function as an efficient hole-trapping site in the positive-charge transfer in DNA duplexes.  相似文献   

18.
Guanine bases are the most easily oxidized sites in DNA. Electron-deficient guanine species are major intermediates produced in DNA by the direct effect of ionizing radiation (ionization of the DNA itself) because of preferential hole migration within DNA to guanine bases. By using thiocyanate ions to modify the indirect effect (ionization of the solvent), we are able to produce these single-electron-oxidized guanine radical species in dilute aqueous solutions of plasmid DNA where the direct effect is negligible. The guanyl radical species produce stable modified guanine products. They can be detected in the plasmid by converting them to strand breaks after incubation with a DNA repair enzyme. If a phenol is present during irradiation, the yield of modified guanines is decreased. The mechanism is reduction of the guanine radical species by the phenol. It is possible to derive a rate constant for the reaction of the phenol with the guanyl radical. The pH dependence shows that phenolate anions are more reactive than their conjugate acids, although the difference for guanyl radicals is smaller than with other single-electron-oxidizing agents. At physiological pH values, the reduction of a guanyl radical entails the transfer of a proton in addition to the electron. The relatively small dependence of the rate constant on the driving force implies that the electron cannot be transferred before the proton. These results emphasize the potential importance of acidic tyrosine residues and the intimate involvement of protons in DNA repair.  相似文献   

19.
The effects of structural fluctuations on charge transfer in double-stranded DNA and peptide nucleic acid (PNA) are investigated. A palindromic sequence with two guanine bases that play the roles of hole donor and acceptor, separated by a bridge of two adenine bases, was analyzed using combined molecular dynamics (MD) and quantum-chemical methods. Surprisingly, electronic structure calculations on individual MD snapshots show significant frontier orbital electronic population on the bridge in approximately 10% of the structures. Electron-density delocalization to the bridge is found to be gated by fluctuations of the covalent conjugated bond structure of the aromatic rings of the nucleic bases. It is concluded, therefore, that both thermal hopping and superexchange should contribute significantly to charge transfer even in short DNA/PNA fragments. PNA is found to be more flexible than DNA, and this flexibility is predicted to produce larger rates of charge transfer.  相似文献   

20.
DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging pi-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence for the rate of DNA-mediated CT across adenine tracts monitored by 2-aminopurine fluorescence. Here we report a similar periodicity by monitoring N 2-cyclopropylguanosine decomposition by rhodium and anthraquinone photooxidants. Furthermore, we find that this periodicity is attenuated by consequent back-electron transfer (BET), as observed by direct comparison between sequences that allow and suppress BET. Thus, the periodicity can be controlled by engineering the extent of BET across the bridge. The periodic length dependence is not consistent with a periodicity predicted by molecular wire theory but is consistent with a model where multiples of four to five base pairs form an ideal CT-active length of a bridging adenine domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号