首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onset of double-diffusive buoyancy-driven flow resulted from vertical temperature and concentration gradients in a horizontal layer of a saturated and homogenous porous medium is investigated using amplification factor theory. After injection of CO2 into a deep saline aquifer, the density of the brine saturated with CO2 increases slightly. This increase in density induces natural convection. The effect of geothermal gradient is also considered in this work as a second incentive for convection and the double-diffusion convection was studied. Linear stability analysis is used to predict the inception of instabilities and initial wavelength of the convective instabilities. The analysis presented is applied to acid gas injection (as an analogue for CO2 storage) into saline aquifers in the Alberta basin. It is found that the geothermal gradient does not have significant effect on the onset of convection for these aquifers. It is shown that the geothermal effects on the onset of natural convection are negligible as compared to the solutal effects induced by dissolution and diffusion of CO2 in deep saline aquifers. Therefore, the linear stability analysis and the long-term numerical simulation of CO2 sequestration into such saline aquifers may be assumed to be isothermal in terms of natural convection occurrence.  相似文献   

2.
The Brinkman extended Darcy model including Lapwood and Forchheimer inertia terms with fluid viscosity being different from effective viscosity is employed to investigate the effect of vertical throughflow on thermal convective instabilities in a porous layer. Three different types of boundary conditions (free–free, rigid–rigid and rigid–free) are considered which are either conducting or insulating to temperature perturbations. The Galerkin method is used to calculate the critical Rayleigh numbers for conducting boundaries, while closed form solutions are achieved for insulating boundaries. The relative importance of inertial resistance on convective instabilities is investigated in detail. In the case of rigid–free boundaries, it is found that throughflow is destabilizing depending on the choice of physical parameters and the model used. Further, it is noted that an increase in viscosity ratio delays the onset of convection. Standard results are also obtained as particular cases from the general model presented here.  相似文献   

3.
Carbon dioxide (CO2) injections in geological formations are usually performed for enhanced hydrocarbon recovery in oil and gas reservoirs and storage and sequestration in saline aquifers. Once CO2 is injected into the formation, it propagates in the porous rock by dispersion and convection. Chemical reactions between brine ions and CO2 molecules and consequent reactions with mineral grains are also important processes. The dynamics of CO2 molecules in random porous media are modeled with a set of differential equations corresponding to pore scale and continuum macroscale. On the pore scale, convective–dispersive equation is solved considering reactions on the inner boundaries in a unit cell. A unit cell is the smallest portion of a porous media that can reproduce the porous media by repetition. Inner boundaries in a unit cell are the surfaces of the mineral grains. Dispersion process at the pore scale is transformed into continuum macroscale by adopting periodic boundary conditions for contiguous unit cells and applying Taylor-Aris dispersion theory known as macrotransport theory. Using this theory, the discrete porous system changes into a continuum system within which the propagation and interaction of CO2 molecules with fluid and solid matrix of the porous media are characterized by three position-independent macroscopic coefficients: the mean velocity vector , dispersivity dyadic , and mean volumetric CO2 depletion coefficient .  相似文献   

4.
Storage and disposal of greenhouse gases in saline aquifers is an important solution for reduction of these gases from atmosphere. Understanding the concepts and mechanisms involved in the storage process, especially natural convection and their impact on long-term fate of injected CO2 are essential. Natural convection is an effective mechanism which increases solubility of carbon dioxide in the storage process. In this work, injection of carbon dioxide into aquifer is numerically simulated. First, numerical criteria are developed to provide numerical accuracy and stability by mesh resolution. Then, changes in input wave number in surface perturbation and order of element used in finite element method were analyzed. It was found that depending on Rayleigh number, there is a wave number at which instability occurs earlier and grows faster. Also, onset of CO2 convective mixing in saline aquifers was obtained and correlated for a number of field cases. Results show that onset of convection can be approximated by a scaling relationship for dimensionless time as a function of inverse square of Rayleigh number, Ra ?2, for Rayleigh range used in this work. This scaling relationship provides a predictive tool for onset of convection and also long-term fate of disposed CO2 in large scale geological sequestration.  相似文献   

5.
The momentum and heat transfer characteristics associated with the boundary layer on a continuous moving flat surface in a non-Darcian fluid have been investigated exploiting a local similarity solution procedure. The full boundary layer equations, which describe the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables, deduced from a scale analysis on the momentum and energy conservation equations. Details are provided for the effects of convective inertia and porous inertia on the velocity and temperature profiles. The resulting friction and heat transfer characteristics are found to be substantially different from those of forces convection over a stationary flat plate. Furthermore, useful asymptotic expressions for the local Nusselt number are presented in consideration of possible physical limiting conditions.  相似文献   

6.
This article deals with the onset of thermosolutal natural convection in horizontal superposed fluid and porous layers. A linear stability analysis is performed using the one-domain approach. As in the thermal convection case, the results show a bimodal nature of the marginal stability curves where each mode corresponds to a different convective instability. At small wave numbers, the convective flow occurs in the whole cavity (“porous mode”) while perturbations of large wave numbers lead to a convective flow mainly confined in the fluid layer (“fluid mode”). Furthermore, it is shown that the onset of thermosolutal natural convection is characterized by a multi-cellular flow in the fluid region for negative thermal Rayleigh numbers. For positive thermal Rayleigh numbers, the convective flow takes place both in the fluid and porous regions. The influence of the depth ratio and thermal diffusivity ratio is also investigated for a wide range of the thermal Rayleigh numbers.  相似文献   

7.
Injection of carbon dioxide (CO2) into saline aquifers confined by low- permeability cap rock will result in a layer of CO2 overlying the brine. Dissolution of CO2 into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO2 storage security because it accelerates the transfer of buoyant CO2 into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO2 solute-driven convection (CSC). Upon introduction of CO2 into the system, a layer of CO2-laden brine forms at the CO2-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO2 uptake of the convection system indicates that the CO2 dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments may be an artifact of a small temperature gradient induced by the cell illumination.  相似文献   

8.
This paper studies Rayleigh-Bénard convection of micropolar fluid layer heated from below with realistic boundary conditions. A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces. The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential boundary conditions. Further, the values of the Rayleigh number for particular cases of large and small values of the microrotation coefficient have been obtained. The effects of wave number and micropolar parameter on the Rayleigh numbers for onset of stationary instability for each possible combination of the bounding surfaces are discussed and illustrated graphically. The present analysis establishes that the nature of bounding surfaces combination and microrotation have significant effect on the onset of convection.  相似文献   

9.
The stability of a fluid saturated, horizontal porous layer in the presence of a solute concentration gradient and time-periodic thermal gradient is examined. The modulated gradient is the result of a sinusoidal upper surface temperature which models the effect of variable solar radiation heating of the layer. Darcy's law and the Boussinesq approximation are employed, and we assume an equation of state linear in temperature and concentration. A linear stability analysis is carried out to obtain predictions for the onset of convection and critical wavenumbers for the system. The critical conditions are obtained via the Galerkin method and Floquet theory. The effects of variable concentration gradient, temperature modulation amplitude and frequency are examined, and compared with the results obtained analytically from the corresponding unmodulated problem. It is shown that instabilities can occur as convective motions which are synchronous or subharmonic with the surface heating, or can be identified via complex conjugate Floquet exponents. The neutral stability curves at the transitions between instabilities are found to be bimodal when the temperature is time-periodic, and are characterized by jumps in the critical wavenumbers. Received February 5, 1998  相似文献   

10.
Convection of an isothermal three-component mixture saturating a porous block with a rectangular cross-section is investigated numerically when the concentration gradient of one of the components is modulated about a certain mean value. The shape of the neutral curves separating the growing and decaying disturbances in the amplitude-modulation frequency plane is investigated for various diffusion Rayleigh numbers. The results of calculations based on the linearized and complete systems of equations which describe convection of a mixture in a porous medium are analyzed and compared. The supercritical regimes of concentration convection are studied for steady-state boundary conditions and in the case of a periodic modulation of the concentration gradient of one of the components.  相似文献   

11.
The structures of the convective motions and the nature of the heat transfer in a horizontal cylindrical layer are studied numerically for the Forchheimer model of a porous medium in the Boussinesq approximation. New asymmetric solutions of the equations of convection flow through a porous medium are found. Their development, domains of existence, and stability are investigated. One consists of a multivortex structure with asymmetric vortices in the near-polar region. Another asymmetric solution is realized at large Grashof numbers in the form of a convective plume deflected from the vertical. The threshold Grashof number of formation of the asymmetric motions depends on the Prandtl number and the cylindrical layer thickness.  相似文献   

12.
We numerically simulate the initiation of an average convective flow in a system composed of a horizontal binary fluid layer overlying a homogeneous porous layer saturated with the same fluid under gravitational field and vibration. In the layers, fixed equilibrium temperature and concentration gradients are set. The layers execute high-frequency oscillations in the vertical direction. The vibration period is small compared with characteristic timescales of the problem. The averaging method is applied to obtain vibrational convection equations. Using for computation the shooting method, a numerical investigation is carried out for an aqueous ammonium chloride solution and packed glass spheres saturated with the solution. The instability threshold is determined under two heating conditions—on heating from below and from above. When the solution is heated from below, the instability character changes abruptly with increasing solutal Rayleigh number, i.e., there is a jump-wise transition from the most dangerous shortwave perturbations localized in the fluid layer to the long-wave perturbations covering both layers. The perturbation wavelength increases by almost 10 times. Vibrations significantly stabilize the fluid equilibrium state and lead to an increase in the wavelength of its perturbations. When the fluid with the stabilizing concentration gradient is heated from below, convection can occur not only in a monotonous manner but also in an oscillatory manner. The frequency of critical oscillatory perturbations decreases by 10 times, when the long-wave instability replaces the shortwave instability. When the fluid is heated from above, only stationary convection is excited over the entire range of the examined parameters. A lower monotonic instability level is associated with the development of perturbations with longer wavelength even at a relatively large fluid layer thickness. Vibrations speed up the stationary convection onset and lead to a decrease in the wavelength of most dangerous perturbations of the motionless equilibrium state. In this case, high enough amplitudes of vibration are needed for a remarkable change in the stability threshold. The results of numerical simulation show good agreement with the data of earlier works in the limiting case of zero fluid layer thickness.  相似文献   

13.
A boundary layer analysis has been presented to study the combined effects of viscous dissipation, Joule heating, transpiration, heat source, thermal diffusion and Hall current on the hydromagnetic free convection and mass transfer flow of an electrically conducting, viscous, homogeneous, incompressible fluid past an infinite vertical porous plate. The governing partial differential equations of the hydromagnetic free convective boundary layer flow are reduced to non-linear ordinary differential equations and solutions for primary velocity, secondary velocity, temperature and concentration field are obtained for large suction. The expressions for the skin-friction, the heat transfer and the mass transfer are also derived. The results of the study are discussed through graphs and tables for different numerical values of the parameters entered into the equations governing the flow.  相似文献   

14.
The influence of vibrations of a cavity containing a fluid on the convective stability of the equilibrium has been investigated on a number of occasions [1]. The stability of convective flows in a modulated gravity field has not hitherto been studied systematically. There is only the paper of Baxi, Arpaci, and Vest [2], which contains fragmentary data corresponding to various values of the determining parameters of the problem. The present paper investigates the linear stability of convective flow in a vertical plane layer with walls at different temperatures in the presence of longitudinal harmonic vibrations of the cavity containing the fluid. It is assumed that the frequency of the vibrations is fairly high; the motion is described by the equations of the averaged convective motion. The stability boundaries of the flow with respect to monotonic perturbations in the region of Prandtl numbers 0 ? P ? 10 are determined. It is found that high-frequency vibrations have a destabilizing influence on the convective motion. At sufficiently large values of the vibration parameter, the flow becomes unstable at arbitrarily small values of the Grashof number, this being due to the mechanism of vibrational convection, which leads to instability even under conditions of weightlessness, when the main flow is absent [3, 4].  相似文献   

15.
This article presents a numerical modeling application using the code TOUGHREACT of a leakage scenario occurring during a CO2 geological storage performed in the Jurassic Dogger formation in the Paris Basin. This geological formation has been intensively used for geothermal purposes and is now under consideration as a site for the French national program of reducing greenhouse gas emissions and CO2 geological storage. Albian sandstone, situated above the Dogger limestone is a major strategic potable water aquifer; the impacts of leaking CO2 due to potential integrity failure have, therefore, to be investigated. The present case–study illustrates both the capacity and the limitations of numerical tools to address such a critical issue. The physical and chemical processes simulated in this study have been restricted to: (i) supercritical CO2 injection and storage within the Dogger reservoir aquifer, (ii) CO2 upwards migration through the leakage zone represented as a 1D vertical porous medium to simulate the cement–rock formation interface in the abandoned well, and (iii) impacts on the Albian aquifer water quality in terms of chemical composition and the mineral phases representative of the porous rock by estimating fluid–rock interactions in both aquifers. Because of CPU time and memory constraints, approximation and simplification regarding the geometry of the geological structure, the mineralogical assemblages and the injection period (up to 5 years) have been applied to the system, resulting in limited analysis of the estimated impacts. The CO2 migration rate and the quantity of CO2 arriving as free gas and dissolving, firstly in the storage water and secondly in the water of the overlying aquifer, are calculated. CO2 dissolution into the Dogger aquifer induces a pH drop from about 7.3 to 4.9 limited by calcite dissolution buffering. Glauconite present in the Albian aquifer also dissolves, causing an increase of the silicon and aluminum in solution and triggering the precipitation of kaolinite and quartz around the intrusion point. A sensitivity analysis of the leakage rate according to the location of the leaky well and the variability of the petro-physical properties of the reservoir, the leaky well zone and the Albian aquifers is also provided.  相似文献   

16.
The vertical throughflow with viscous dissipation in a horizontal porous layer is studied. The horizontal plane boundaries are assumed to be isothermal with unequal temperatures and bottom heating. A basic stationary solution of the governing equations with a uniform vertical velocity field (throughflow) is determined. The temperature field in the basic solution depends only on the vertical coordinate. Departures from the linear heat conduction profile are displayed by the temperature distribution due to the forced convection effect and to the viscous dissipation effect. A linear stability analysis of the basic solution is carried out in order to determine the conditions for the onset of convective rolls. The critical values of the wave number and of the Darcy–Rayleigh number are determined numerically by the fourth-order Runge–Kutta method. It is shown that, although generally weak, the effect of viscous dissipation yields an increase of the critical value of the Darcy–Rayleigh number for downward throughflow and a decrease in the case of upward throughflow. Finally, the limiting case of a vanishing boundary temperature difference is discussed.  相似文献   

17.
时间发展平面混合流的三维演化   总被引:6,自引:0,他引:6  
傅德薰  马延文 《力学学报》1998,30(2):129-137
采用高精度差分方法和群速度控制方法,求解三维可压缩N S方程,直接数值模拟了时间发展的平面混合流.研究了平面混合流三维拟序结构的形成及发展.给出了流动失稳后涡的卷起,相邻两涡的对并,激波的形成及发展.指出,涡对并所诱导产生的激波对三维拟序结构的形成及发展过程是重要的.  相似文献   

18.
Carbon Capture and Storage (CCS) is one of the solutions studied to reduce greenhouse gas accumulation in the atmosphere. Depleted oil and gas reservoirs have been studied for potential storage sites but also saline aquifers that have the advantages of much larger pore volume. In this latter case, injection of large volume of anhydrous carbon dioxide will lead to a strong water desaturation of the near wellbore region because of evaporation mechanisms. Even the capillary trapped water can be removed by thermodynamical transfer of water vapor in the CO2 phase. The extension in time and space of the dry zone will be controlled by the drying rate induced by the gas flow. Consequences of drying may induce alteration of the injectivity by salt precipitation and/or alteration of the rock fabric itself, especially for shaly sandstones in the case of clay drying. The context of CCS has raised new interests in the understanding of drying kinetic where the water vapor is evacuated by gas convection. In this study, we investigated experimentally the drying rate evolution with time on a shaly sandstone sample in two conditions of drying: convective and diffusive. In convective conditions, air is injected at different flow rates through the porous media in conditions of drying representative of a CO2 injection site at one million ton per year. In diffusive conditions, no flow is imposed and the water vapor escape by diffusion. Drying rates dynamics in both conditions were measured by Nuclear Magnetic Resonance (NMR) and compared. We varied the temperature and the salinity in diffusive-driven drying and the gas flow rate in convective-driven drying. The water distribution in the pore network and the water saturation profiles were monitored continuously using T2 relaxation and 1D imaging NMR techniques. For the range of temperature and air flow rate used, we show that drying rates in the two drying conditions are similar but not identical. They both present different periods characteristic of the main mechanisms for water mass transfer. Drying rate has a power law dependence on the temperature, as predicted by thermodynamic, and drying rate was found proportional to the flow rate in convective drying. Presence of salt has a complex effect: an increase of the drying rate at early stage of drying followed by a strong decrease for the remaining time of drying.  相似文献   

19.
The onset of convection in a system of two horizontal layers (a pure liquid and a porous medium saturated with the same liquid) heated from below under the action of vertical vibration is investigated. For describing the free thermal convection, in the liquid layer the Boussinesq approximation and in the porous layer the Darcy-Boussinesq approximation are used. In the limiting case of a thin liquid layer, effective boundary conditions on the upper boundary of the porous layer with account for convection in the liquid layer are obtained and it is shown that vibration has a stabilizing effect, whereas the presence of a liquid layer leads to destabilization. For an arbitrary liquid to porous layer thickness ratio the onset of convection is investigated numerically. In the case of a thin liquid layer there are two (short-and long-wave) unstable modes. In the case of thick layers the neutral curves are unimodal. Vibration has a stabilizing effect on perturbations with any wave number but affects short-wave perturbations much more strongly than long-wave ones.  相似文献   

20.
A linear stability analysis is carried out to study viscoelastic fluid convection in a horizontal porous layer heated from below and cooled from above when the solid and fluid phases are not in a local thermal equilibrium. The modified Darcy–Brinkman–Maxwell model is used for the momentum equation and two-field model is used for the energy equation each representing the solid and fluid phases separately. The conditions for the onset of stationary and oscillatory convection are obtained analytically. Linear stability analysis suggests that, there is a competition between the processes of viscoelasticity and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. Elasticity is found to destabilize the system. Besides, the effects of Darcy number, thermal non-equilibrium and the Darcy–Prandtl number on the stability of the system are analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号