首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exciton spectra are studied in CuGaXIn1−XS2 solid solutions by means of photoreflectivity and wavelength modulation spectroscopy at liquid nitrogen temperature. The exciton parameters, dielectric constants, and free carrier effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The crystal field and spin orbit valence band splitting is calculated as a function of X taking into account the energy position of excitonic lines. The energy band structure of CuGaXIn1−XS2 and CuGaXIn1−XSe2 compounds is derived from optical spectra at photon energies higher than the fundamental band gap. The energies of optical transitions are tabulated for X values from 0 to 1.  相似文献   

2.
We report electric and magnetic properties of oxygen deficient Ba5−xLaxNb4−xTixO15−δ phases, which have been prepared by solid-state reaction method followed by a controlled reduction process under hydrogen atmosphere. The extra electrons added by the formation of the oxygen vacancies (δ) introduce localized spins and the magnetic susceptibility can be described by a temperature-independent contribution and a Curie-Weiss term associated to the Ti3+ ion formation. Besides, the experimental resistivity (ρ) data of these four reduced compounds are well described in a wide temperature range with the equation , which suggests the presence of small polarons in the system. Although, all samples present electrical insulating behavior, the electrical resistivity decreases four orders of magnitude for intermediate x values. We interpreted this fact as a consequence of the mix between the localized bands of the Nb and Ti ions, which favors the promotion of carriers due to reduction of the band gap.  相似文献   

3.
The Si doped (Cu0.5Tl0.5)Ba2Ca2Cu3−ySiyO10−δ (y=0, 0.25, 0.5, 0.75, 1.0, 1.25) superconductor samples have been synthesized to investigate the effect of mobile carriers on the critical temperature and magnitude of diamagnetism of this family of cuprates. The Si doped samples have tetragonal structure as observed from the X-ray diffraction spectra. The c-axis length of the unit cell of (Cu0.5Tl0.5)Ba2Ca2Cu3−ySiyO10−δ was increased after the increase of Si concentration, whereas the critical temperature and the magnitude of diamagnetism have been decreased. The decrease in Tc(0) and magnitude of diamagnetism is possibly due to the deficiency of carriers in CuO2/SiO2 planes caused by the +4 state of Si atoms. However, the post-annealing of these samples in oxygen atmosphere has increased the critical temperature and the magnitude of diamagnetism. The FTIR absorption measurements of (Cu0.5Tl0.5)Ba2Ca2Cu3−ySiyO10−δ samples have shown a softening of the apical oxygen mode of the type Cu(1)OACu(2) and TlOACu(2) with increased concentration of Si in the unit cell; the softening of this mode is directly linked with the increase in the c-axis lattice parameter of the (Cu0.5Tl0.5)Ba2Ca2Cu3−ySiyO10−δ superconductor.  相似文献   

4.
Atomistic simulations were performed to investigate the lattice parameters, dielectric constant, and elastic constants of Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures. The calculated lattice parameters and elastic constants are in good agreement with those in available experimental results. The pressure dependence of all studied quantities was investigated. In general, a change in the behavior of all studied quantities is found when the Ga concentration becomes more than that of the aluminum (Al) in Y3(GaxAl5−x)O12 (x = 1, 2, 3, 4, 5) structures.  相似文献   

5.
The oxygen deficiency of perovskite-type Pr0.5Sr0.5FeO3−δ, studied by coulometric titration, thermogravimetry and Mössbauer spectroscopy, is significantly higher than that in La0.5Sr0.5FeO3−δ at 973-1223 K. The variations of hole mobility and Seebeck coefficient in oxidizing atmospheres, where the total conductivity of praseodymium-strontium ferrite is predominantly p-type electronic, suggest progressive delocalization of the p-type charge carriers on increasing oxygen chemical potential. As for other perovskite-type ferrites, reduction leads to the co-existence of vacancy-ordered and disordered domains. The n-type electronic conductivity of Pr0.5Sr0.5FeO3−δ at reduced p(O2) and the hole transport under oxidizing conditions are both lower compared to the La-containing analogue. Analogous conclusion was drawn for the ionic conductivity, calculated from the steady-state oxygen permeation data under oxidizing conditions and from the p(O2)-dependencies of total conductivity in the vicinity of electron-hole equilibrium points where the average iron oxidation state is 3+. The similar activation energies for partial ionic and electronic conductivities in Ln0.5Sr0.5FeO3−δ (Ln=La, Pr) indicate that the presence of praseodymium does not alter any of the conduction mechanisms but decreases the charge-carrier mobility due to the smaller radius of Pr3+ cations stabilized in the perovskite lattice.  相似文献   

6.
Perovskite compounds in the system of SrCo1−xFexO3−δ (x=0.2, 0.4 and 0.6) were synthesized by solid state reaction. SrCo1−xFexO3−δ shows the p-type small polaron conduction behavior. Electrical conductivity and oxygen vacancy content decrease with increase in Fe content. The incorporation of Fe increases the structural stability of SrCo1−xFexO3−δ at low temperatures, while decreasing the structural stability at high temperatures. Oxygen partial pressure has a strong influence on electrical conductivity. At low oxygen partial pressure, SrCo0.8Fe0.2O3−δ will transform from cubic to orthorhombic structure. This structure can remain in 5%H2/Ar only for a short time and then dissociates into Sr3Fe2O6.64 and Co due to the reduction of B-site elements.  相似文献   

7.
Tungsten bronze (TB)-type oxide ceramic Pb0.74K0.13Y0.13Nb2O6 (PKYN) has been synthesized by the standard solid state reaction method. Single phase formation, orthorhombic crystal structure was confirmed by X-ray diffraction (XRD). The substitution of Y3+ in Pb0.74K0.52Nb2O6 (PKN) decreased the unit cell volume and TC=260 °C. PKYN exhibited the remnant polarization, Pr=8.5 μC/cm2, and coercive field, Ec=28.71 kV/cm. Electrical spectroscopy studies were carried out over the temperature (35-595 °C) and frequency (45 Hz-5 MHz) ranges, and the charge carrier phenomenon, grain-grain boundary contribution and non-Debye-type relaxation were analyzed. The relaxation species are immobile charges in low temperature and oxygen vacancies at higher temperature. The theoretical values computed using the relations, ε′=ε+sin(n(T)π/2)(a(T)/ε0)(ωn(T)−1); σ(ω)=σdc+Aωn are fitted with the experimental one. The n and A parameters suggested that the charge carrier's couple with the soft mode and become mobile at TC. The activation enthalpy, Hm=0.38 eV, has been estimated from the hopping frequency relation ωp=ωe exp(−Hm/kBT). The piezoelectric constants Kt=35.4%, d33=69×10−12 C/N, d31=−32×10−3 mV/N, S11E=17.8 pm2/N, etc., achieved in PKYN indicate the material is interesting for transducer applications. The activation energies from different formalisms confirmed the ionic-type conduction.  相似文献   

8.
The molecular statics method is used to study the formation of defects and water incorporation in Y2O3. The crystal structure, the isothermal compressibility, and the formation enthalpy of Y2O3 calculated with the chosen interaction potentials are in good agreement with the experimental data. The formation energies of intrinsic and impurity defects are evaluated. The binding energy of protons and oxygen vacancies with an acceptor impurity at different distances is calculated. Various water incorporation reactions in the oxide are examined, including the mechanisms involving oxygen interstitial sites and oxygen vacancies produced by the acceptor doping. It is shown that the water incorporation in pure Y2O3 is energetically less favorable than in the acceptor doped oxide.  相似文献   

9.
The optical phonon spectrum of the semiconductor Cu2SnTe3, that crystallizes in the orthorhombic structure with space group Imm2 (), have been studied by measuring unpolarized Raman scattering between 10 and 300 K. The experimental frequencies of the phonon modes observed were compared to those calculated by using simplified lattice dynamical models reported in the literature. From combined analysis of these results together with the factor group analysis of the zone-center vibrational modes, valuable information about these modes was obtained and their possible symmetry was assigned. A1 modes at 71, 123, 167, 176 and 190 cm−1; A2 modes 115 and 131 cm−1; B1 modes at 76, 142 and 152 cm−1; B2 modes at 89, 100 and 206 cm−1; a overtone at 246 cm−1, and combinations at 218, 270 and 292 cm−1; have been observed in this compound.  相似文献   

10.
In this contribution we present the analysis of the third harmonic susceptibility data of the new superconductor NdFeAs1−0.14F0.14. ‘Cole-Cole’ polar plots respect to the magnetic frequency of the exciting field are presented and discussed. Data show that NdFeAs1−0.14F0.14 exhibit a ‘bulk pinning’ with a 3D flux dynamic character. A comparison of the responses of high Tc materials and an evaluation of theoretical critical states is also presented.  相似文献   

11.
Liquid nitrogen, liquid oxygen and liquid argon were tested as coolers for quenching performed after equilibrium of (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (x=0.1 or 0.4) with oxygen has been attained. This compound has been previously denoted as CLBLCO, CLBCO or CaLaBaCuO. Absorption of O2 during quenching in liquid oxygen was found and measured. Such samples are oxygen inhomogeneous. The transition to superconductivity is wide and begins 20 K higher than for a homogeneous sample having the same oxygen content. Liquid nitrogen, which is usually used as an external cooling agent containing 2-3% of oxygen, also leads to notable oxygen absorption. Only quenching in oxygen free liquid argon or in oxygen free liquid nitrogen does not cause oxygen absorption and may be used for the preparation of homogeneous samples of CLBLCO after equilibration at any temperature in the range from 300 to 950 °C.  相似文献   

12.
The oxygen hyperstoichiometry of K2NiF4-type La2Ni0.9Fe0.1O4+δ, studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 6×10−5-0.7 atm at 923-1223 K, is considerably higher than that of undoped lanthanum nickelate. The p(O2)-T-δ diagram of iron-doped lanthanum nickelate can be adequately described by introducing point-defect interaction energy in the concentration-dependent part of defect chemical potentials and accounting for the site-exclusion effects. The critical factors affecting the equilibrium oxygen incorporation process include coulombic repulsion of interstitial anions, trapping of the p-type electronic charge carriers by iron, and interaction between Fe3+ and holes localized on nickel cations. Due to low chemical expansion of La2Ni0.9Fe0.1O4+δ lattice, the thermodynamic functions governing oxygen intercalation, site-blocking factors and hole mobility are all independent of the defect concentrations. The predominant 3+ state of iron cations under oxidizing conditions was confirmed by the Mössbauer spectroscopy. The stability of La2NiO4-based phase in reducing atmospheres is essentially unaffected by doping.  相似文献   

13.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

14.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

15.
The redox behavior of perovskite-type La0.90Sr0.10Al0.85−xFexMg0.15O3−δ (x=0.20-0.40) mixed conductors was analyzed by the Mössbauer spectroscopy and measurements of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10−20 to 0.5 atm at 1023-1223 K. The results combined with oxygen-ion transference numbers determined by the faradaic efficiency technique in air, were used to calculate defect concentrations, mobilities, and partial ionic and p- and n-type electronic conductivities as a function of oxygen pressure. The redox and transport processes can be adequately described in terms of oxygen intercalation and iron disproportionation reactions, with the thermodynamic functions independent of defect concentrations. No essential delocalization of the electronic charge carriers was found. The oxygen non-stoichiometry values estimated from the conductivity vs. p(O2) dependencies, coincide with those evaluated from the Mössbauer spectra.  相似文献   

16.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

17.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

18.
A theoretical study of the elastic properties in diluted magnetic semiconductors Hg1−xMnxS (x=0.02 and 0.07) using an effective interionic interaction potential (EIoIP) in which long-range Coulomb interactions, charge transfer mechanism (three body interaction) and the Hafemeister and Flygare type short-range overlap repulsion extending up to the second neighbor ions and the van der Waals (vdW) interaction is considered. Particular attention is devoted to evaluate Poisson's ratio ν, the ratio RS/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and thermodynamic property as Debye temperature is calculated. By analyzing Poisson's ratio ν and the ratio RS/B we conclude that Hg1−xMnxS is brittle in zinc blende (B3). To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg1−xMnxS compounds and still awaits experimental confirmations.  相似文献   

19.
Complex spectroscopic studies of (Ce,Gd)Sc3(BO3)4:Cr3+ (CSB:Cr3+) crystals (crystal growth, absorption and luminescence spectroscopy, crystal field calculations, analysis of the radiative and non-radiative decays) are presented. The main results of the paper include calculations of crystal field parameters and energy level scheme for Cr3+ at distorted octahedral Sc3+ sites, evaluation of the Huang-Rhys factor, effective phonon frequency, zero-phonon line energy, and parameters of radiative and non-radiative decays. Comparison with experimental results and other literature data is discussed. A very unusual value of the frequency factor (related to the non-radiative processes) is explained as being due to heterodesmic nature of chemical bonds in the CSB crystal. Cr3+-doped CSB crystals (with Cr3+ concentration 5.1×1019 cm−3 or 1%) are suggested as promising candidates for potential applications as active media for solid state lasers.  相似文献   

20.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号