首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat capacity of two rare-earth orthoferrites HoFeO3 and LuFeO3 were measured between 1.8 and 200 K. A distinctly large and two small heat capacity anomalies were detected for HoFeO3 under zero magnetic field around 3.3, 53 and 58 K, respectively. The low-temperature anomaly with a peak at 3.3 K is due to the ordering of Ho3+ ions and the estimated magnetic entropy for this transition was favorably compared with the expected (R ln 2). Application of magnetic field significantly affects the positions and the magnitudes of the anomaly at 3.3 K. Energies of low-lying levels of the lowest J-term of Ho3+ ion were roughly estimated through analysis of the Schottky heat capacity.  相似文献   

2.
Electrical impedance measurements of Na3H(SO4)2 were performed as a function of both temperature and frequency. The electrical conductivity and dielectric relaxation have been evaluated. The temperature dependence of electrical conductivity reveals that the sample crystals transformed to the fast ionic state in the high temperature phase. The dynamical disordering of hydrogen and sodium atoms and the orientation of SO4 tetrahedra results in fast ionic conductivity. In addition to the proton conduction, the possibility of a Na+ contribution to the conductivity in the high temperature phase is proposed. The frequency dependence of AC conductivity is proportional to ωs. The value of the exponent, s, lies between 0.85 and 0.46 in the room temperature phase, whereas it remains almost constant, 0.6, in the high-temperature phase. The dielectric dispersion is examined using the modulus formalism. An Arrhenius-type behavior is observed when the crystal undergoes the structural phase transition.  相似文献   

3.
The work presents a detailed analysis of the sequencing of the structural phase transitions in NH3(CH2)3NH3CdCl4 crystal by differential scanning calorimetry (DSC), X-ray, infrared, far infrared and Raman spectroscopy. DSC studies have shown that in analyzed crystal occurring one reversible continuous phase transition at 375/374 K (on heating/cooling). Observed in Nujol and Fluorolube mulls in the wide temperature range between 296 K and 413 K spectral changes through the structural phase transition can be attributed to an onset of motion of cations. An assignment of some bands due to internal modes has been also proposed.  相似文献   

4.
The famous Goldschmidt's tolerance factor gives us a necessary but not sufficient condition for the formation of perovskite-type compounds (ABX3). In this work, computerized data analysis has been used to find some complementary criteria for the formation and lattice distortion of perovskite-type complex halides. It has been found that the radius ratio (RA/RX) and (RB/RX), affecting the stability of BX6 octahedra and AX12 cubo-octahedra (they are basic units of perovskite structure), are also dominating factors for the formation and lattice distortion of perovskite-type compounds. Besides, it has been found that the transition between the perovskite structure (with corner-sharing BX6 octahedra) to BaNiO3 structure (with face-sharing BX6 octahedra) can be predicted by a criterion based on the relative magnitude of ionic radii and electronegativity. Based on multivariate data analysis, several complementary criteria for the formation and lattice distortion of perovskite-type complex halides have been obtained, and some empirical equations expressing the relationships between the ionic radii (RA,RB,RX) and the lattice constants of perovskite-type complex halides have been found. The physical meaning of these empirical relationships has been discussed based on Pauling's rules of the crystal lattice stability of complex ionic compounds.  相似文献   

5.
Phase transitions of tetra(isopropylammonium)decachlorotricadmate(II) [(CH3)2CHNH3]4Cd3Cl10 crystal have been studied by infrared, far infrared and Raman measurements in wide temperature range, between 11 K and 388 K. The temperature changes of wavenumber, center of gravity, width and intensity of the bands were analyzed to clarify cationic and anionic contributions to the phase transitions mechanism. The results of investigation showed earlier by differential scanning calorimetry (DSC), thermal expansion and dielectric measurements clearly confirmed the sequence of phase transitions at T1=353 K, T2=294 K and T3=260 K. The current results derived from DSC and infrared measurements revealed additional phase transition at T4=120 K.  相似文献   

6.
The mean first passage time (MFPT) as dwell time in high spin metastable state of spin-crossover solids is investigated both analytically and numerically. Calculations showed that the MFPT decreases with the increases of a distance from metastable state. The probability density function has also been examined.  相似文献   

7.
Dielectric measurements have been carried out for the determination of real and imaginary parts of the permittivity of a newly synthesized, unusually shaped liquid crystal. The sample has been investigated in the frequency range from 100 Hz to 10 MHz within a temperature range 80-130 °C. The dielectric measurements in the smectic A phase indicate a Cole-Cole type of dispersion, and the activation energy was found to be 5.5 meV by using the Arrhenius plot of relaxation time. In addition to this, thermal and optical transmittance studies have also been conducted in the above mentioned temperature range, and the temperature dependence of these parameters has been discussed in detail. The phase transition temperature obtained from a differential scanning calorimetry (DSC) study matches within 2 °C that was obtained from an optical transmittance study. The dielectric and optical behavior of the unusually shaped liquid crystal has been explained on the basis of a proposed theoretical model in which a sample possesses two different conformers having induced polarizations in opposite directions.  相似文献   

8.
Brillouin spectroscopy was used to study the phase transitions of LiK0.80(NH4)0.20SO4 mixed crystals in the temperature range 10-300 K. The relevant elastic stiffness coefficients were evaluated at room temperature. The quasi-longitudinal γ16 and the quasi-transverse γ17 mode frequencies were measured in the above temperature range. From their frequency vs. temperature curve, three different phase transitions were determined. Two of the four phases presented by the crystal were found to be ferroelastic. The observed phases are tentatively assigned through a comparison with the phase transitions undergone by LiKSO4 and LiK0.96(NH4)0.04SO4 crystals. An anomalous behavior of the Brillouin linewidth near the 260 K phase transition was observed.  相似文献   

9.
(K0.5Na0.5)NbO3 (KNN) single crystals were grown using a high temperature flux method. The dielectric permittivity was measured as a function of temperature for [001]-oriented KNN single crystals. The ferroelectric phase transition temperatures, including the rhombohedral–orthorhombic TRO, orthorhombic–tetragonal TOT and tetragonal–cubic TC were found to be located at −149  C, 205 C and 393 C, respectively. The domain structure evolution with an increasing temperature in [001]-oriented KNN single crystal was observed using polarized light microscopy (PLM), where three distinguished changes of the domain structures were found to occur at −150  C, 213 C and 400 C, corresponding to the three phase transition temperatures.  相似文献   

10.
The complex perovskite solid solution (1−x) Pb(In1/2Nb1/2)O3-(x) Pb(Ni1/3Nb2/3)O3 has been successfully prepared by the Columbite precursor method. The temperature dependencies of the dielectric constant and pyroelectric coefficient were measured between −261 and 200 °C. Relaxor ferroelectric behavior has been noticed in all compositions across the solid solution. The room-temperature electrostrictive coefficient, Q33, was 1.83×10−2 C2/m4 for x=0.10. No room-temperature piezoelectric activity was detected; however, upon cooling to −261 °C the maximum coupling coefficients kp=29%, kt=11%, and k33=31% were observed for the composition x=1.00.  相似文献   

11.
The ac conductivities along the c-axis of the lutetium nitrate crystal were measured successively in the frequency range from 0.5 to 105 Hz at temperatures from 290 to 210 K. The metastable behaviors of the conductivity were found in the temperature region above 200 K. The fluctuation was given by the successive measurements of the time series of the ac conductivities and represented by non-Gaussian probability distribution function. The effect of the metastable singularity on Raman scattering spectra was observed in the metastable temperature region.  相似文献   

12.
The mechanism of formation of hematite particles in the Fe-HNO3 system is investigated by introduction of a small amount of PO43− ions to the system. The intermediate species in the reaction, 6-line ferrihydrite, is successfully obtained. The transformation of 6-line ferrihydrite to hematite is investigated. The results show that Fe(II) in the Fe-HNO3 system can catalyze the dissolution of 6-line ferrihydrite, leading to the rapid formation of hematite.  相似文献   

13.
The temperature dependences of 2H NMR spectra and spin-lattice relaxation time T1 have been measured for paramagnetic [Mn(H2O)6][SiF6]. The obtained 2H NMR spectra were simulated by considering the quadrupole interaction and paramagnetic shift. The variation of the spectra measured in phase III was explained by the 180° flip of water molecules. The activation energy Ea and the jumping rate at infinite temperature k0 for the 180° flip of H2O were obtained as 35 kJ mol−1 and 4×1014 s−1, respectively. The spectral change in phases I and II was ascribed to the reorientation of [Mn(H2O)6]2+ around the C3 axis where the Ea and k0 values were estimated as 45 kJ mol−1 and 1×1013 s−1, respectively. From the almost temperature independent and short T1 value, the correlation time for electron-spin flip-flops, τe, and the exchange coupling constant J were obtained as 3.0×10−10 s and 2.9×10−3 cm−1, respectively. The II-III phase transition can be caused by the onset of the jumping motion of [Mn(H2O)6]2+ around the C3 axis.  相似文献   

14.
Thermal and pressure effects have been investigated on the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex by means of Mössbauer spectroscopic, calorimetric, X-ray diffraction and magnetic susceptibility measurements. The complex displays a complete thermal spin transition between the and spin states of FeIII near 245 K with a hysteresis loop of ca. 30 K. This transition is characterised by a change of the enthalpy, ΔHHL=7 kJ/mol, entropy, ΔSHL=29 J/Kmol, and the unit cell volume, ΔVHL=15.4 Å3. Under hydrostatic pressures up to 5.7 kbar the thermal transition shifts to higher temperatures by ca. 16 K/kbar. Interestingly, at a low applied pressure of 500 bar the hysteresis loop becomes wider (ca. 61 K) and the transition is blocked at ∼50% upon cooling, indicating a possible (irreversible) structural phase transition under pressure.  相似文献   

15.
This article presents a theoretical study on liquid crystalline materials in homologous series of 4'-n-alkyl-4-cyanobiphenyl (nCB) with propyl (3CB), pentyl (5CB), and heptyl (7CB) groups. The atomic net charge and dipole moment components at each atomic center have been evaluated using the complete neglect differential overlap (CNDO/2) method. The modified Rayleigh–Schrodinger perturbation theory along with the multicentered-multipole expansion method has been employed to evaluate the long-range intermolecular interactions, while a ‘6-exp’ potential function has been assumed for short-range interactions. Further, these interaction energy values have been used as input to calculate the translational entropy, and free energy of nCB (n=3, 5, and 7) molecules during the stacking, and in-plane interactions. The observed results have been correlated with the mesogenic behavior and phase stability based on the thermodynamic parameters introduced in this article. Further, an attempt has been made to elucidate the flexibility of a configuration at a particular temperature, which has a direct relation with phase transition property of the molecules.  相似文献   

16.
l-Tyrosine (represented as l-Tyr) intercalated MgAl, NiAl and ZnAl layered double hydroxides (LDHs) have been obtained by the method of coprecipitation. In situ FT-IR, in situ HT-XRD and TG-DTA measurements allow a detailed understanding of the thermal decomposition process for the three intercalated composites. In situ HT-XRD reveals that the layered structure of l-Tyr/MgAl-LDH collapses completely at 450 °C with the first appearance of reflections of a cubic MgO phase, while the corresponding temperature for l-Tyr/NiAl-LDH is some 50 °C lower. In contrast, there is a major structural change in l-Tyr/ZnAl-LDH at 250 °C as shown by the disappearance of its (0 0 6) and (0 0 9) reflections at this temperature accompanied by the appearance of reflections of ZnO. In situ FT-IR experiments give information about the decomposition of the interlayer -Tyr ions. The decomposition temperature of l-Tyr in the ZnAl host is about 50 °C lower than the corresponding values for the MgAl and NiAl hosts. TG-DTA curves show a significant weight loss step (170-260 °C) in l-Tyr/ZnAl-LDH which is due to the dehydroxylation of the host layers, with a corresponding weak endothermic peak at 252 °C. This temperature range is much lower than that observed for MgAl and NiAl hosts, indicating that the ZnAl-LDH layers are relatively unstable. The data indicate that the order of thermal stability of the three intercalates is: l-Tyr/MgAl-LDH > l-Tyr/NiAl-LDH > l-Tyr/ZnAl-LDH.  相似文献   

17.
In this study, 223 binary oxide systems (of which, 34 systems can form cubic perovskites) are collected to explore the regularity of cubic perovskites formability. It is found that the octahedral factor (rB/rO) take the same important role as the tolerance factor (t) to form cubic perovskites in complex oxide system. Regularities governing cubic perovskites formability are obtained by using empirical structure map constructed by these two parameters, on this structure map, sample points representing systems of forming (cubic structure) and non-forming are distributed in distinctively different regions. Prediction criteria for the formability of cubic perovskites are squeezed out, which may be applied to design new substrate or buffer materials with cubic perovskite structure in compound semiconductor epitaxy.  相似文献   

18.
Gibbs energy modeling of iron–nickel pentlandite has been performed using experimental data of ternary phase equilibria. A three-sublattice approach in the framework of the Compound Energy Formalism is developed to refine a two-sublattice model of pentlandite recently applied within a complete assessment of the Fe–Ni–S system. Experimental data about the iron site fraction on the octahedral sublattice at 523.15 K for the composition Fe5Ni4S8 as well as the enthalpy of formation at 298.15 K for the composition Fe4.5Ni4.5S8 are predicted satisfactorily by the novel model. New possibilities to interpret experimental phase equilibrium data on complex phase relations with pentlandite are discussed together on the basis of the recent extension of a second high-temperature heazlewoodite phase to a ternary solution phase.  相似文献   

19.
The pyroelectric effect is measured in tricycloheylmethanolmethanol (TCHM) crystal around the second-order phase transition at 104 K. The presented results confirm that the spontaneous polarization exists in the low temperature phase of TCHM and is reversible in external electric field. It is suggested that TCHM is an improper ferroelectric below 104 K.  相似文献   

20.
As predicted by Haldane, spin, S=1 one-dimensional (1D) Heisenberg antiferromagnet (HAF) has an energy gap between the singlet ground state and first excited triplet. On application of magnetic field, the triplet state Zeeman splits and the energy of one of the triplet state becomes zero at a critical field, Hc. Above Hc the system recovers magnetism. Then, we expect that a quasi-1D HAF will show a magnetic long-range ordering (LRO) at low temperatures due to the inter-chain coupling. This field-induced LRO has not been observed before due to complication of the crystal structure in the materials studied so far and/or technical difficulty.From a heat capacity measurement on a single crystal of an S=1 quasi-Q1D HAF, Ni(C5H14N2)2N3(PF6), we found an anomaly at a temperature in finite fields indicating a field-induced phase transition. A magnetic LRO is confirmed by a neutron diffraction measurement on the same sample. The temperature versus magnetic field phase diagram of this compound is constructed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号