首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general effective-medium dispersion relations are derived for surface-localized magnetic polaritons which propagate parallel to the surface between a superlattice and semi-infinite bulk material, as applied to ferromagnetic and antiferromagnetic superlattices, in the situation when a static magnetic field is applied in the plane of the layers and parallel to the magnetization. The dependence of the energy of the surface waves on the volume fraction of the ferromagnetic superlattice component and the influence of the external magnetic field on the spectrum of the surface magnetic polaritons for the antiferromagnetic superlattice are investigated. The spectrum of the surface-localized magnetic polaritons which appear at the junction of the magnetic (ferromagnetic and antiferromagnetic) superlattice with the magnetic material are more complex, in contrast to the cases of semi-infinite magnetic material or semi-infinite magnetic SL. It is essential that in all cases in the presence of the external magnetic field the spectrum of the magnetic polaritons are non-reciprocal. The properties of surface polaritons are discussed in detail for the system ferromagnetic superlattice (YIG/non magnet)/YAG and the antiferromagnetic superlattice (MnF2/ZnF2)/FeF2.  相似文献   

2.
We study the behavior of surface and bulk polaritons in thin antiferromagnetic films when a dc magnetic field is applied perpendicular to the easy axis. Dispersion relations are obtained for magnetostatic modes, as well as for retarded polaritons. It is shown that, the dispersion relations of localized modes exhibit reciprocity, i.e. but they are non equivalent since they are localized in different regions. The non reciprocal character of surface modes in a semi infinite sample is regained for very thick films.  相似文献   

3.
The dispersion relation of magnetostatic waves tangentially magnetized to saturation ferrite film, with a “magnetic wall” condition (tangential component of microwave magnetic field is equal to zero) on one of the film surface and with a metal condition on the opposite surface is analyzed. The dispersion characteristics show that unidirectional magnetostatic waves appear in this structure: they can transfer energy in one direction only and fundamentally cannot transfer energy in the opposite direction. The dispersion-free propagation of magnetostatic waves also is possible in the structure in a wide frequency interval.  相似文献   

4.
The nonlinear susceptibilities of uniaxially anisotropic ferromagnets are obtained analytically. The expressions show that the anisotropy effect on the first- and second-order components means just an increased H1a (the first-order anisotropy field) of the dc field H0 along the anisotropy axis, but the third-order components are complicated and new terms appear. Applying the above results to surface magnetostatic waves in the films, we find new magnetostatic modes from the joint effect of the anisotropy and nonlinearity since higher powers of frequency are introduced in the dispersion equation by the nonlinearity and anisotropy. Very obvious non-reciprocity is seen from the dispersion curves.  相似文献   

5.
The electronic states, charge dynamics, and spin dynamics in the antiferromagnetic metallic phase of iron-arsenide superconductors are investigated by mean-field calculations for a five-band Hubbard model. Taking into account the difference of observed magnetic moments between LaFeAsO (1111 system) and BaFe2As2 (122 system), we investigate the effect of the magnitude of the moments on band dispersion, optical conductivity, and dynamical spin susceptibility. We clarify how the magnitude affects on these quantities and predict different behaviors between the 1111 and 122 systems in the antiferromagnetic metallic phase.  相似文献   

6.
BiFeO3 has been studied extensively due to its room temperature multiferroic features and has been proven as a promising candidate for device applications. But BiFeO3 possesses some drawbacks like high leakage current and complicated magnetic ordering, giving rise to a canted antiferromagnetic behavior. Hence, a superlattice approach of BiFeO3 and BaTiO3 with a good lattice matching was fabricated and the room temperature ferroelectric and ferromagnetic properties were studied. The macroscopic and local probe studies reveal a ferroelectric nature at room temperature, and most importantly a weak ferromagnetic like behavior was observed. The ferromagnetic behavior is expected to arise due to the variation introduced in the spin modulation of single BiFeO3 layer due to the superstructure formation.  相似文献   

7.
A key prediction of the SO(5) theory is the antiferromagnetic vortex state. Recent neutron scattering experiment on LSCO superconductors revealed enhanced antiferromagnetic order in the vortex state. Here we review theoretical progress since the original proposal and present a theory of static and dynamic antiferromanetic vortices in LSCO superconductors. It is shown that the antiferromagnetic region induced by the vortices can be greater than the coherence length, due to the light effective mass of the dynamic antiferromagnetic fluctuations at optimal doping, and close proximity to the antiferromagentic state in the underdoped regime. Systematic experiments are proposed to unambiguously determine that the field induced magnetic scattering originates from the vortices and not from the bulk.  相似文献   

8.
It is shown from the exact equations for transverse electromagnetic waves propagating in a superlattice that in the long-wavelength limit the superlattice has the optical properties of a conventional uniaxial medium. This result is used to derive the dispersion equations for polaritons at single and double interfaces between superlattices and ordinary media.  相似文献   

9.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

10.
The magnetic, electrical and electronic properties of the tetragonal ternary YbFe4Al8 compound have been investigated. This compound was supposed to be an antiferromagnetic superconductor due to the negative magnetization signal appearing at a low field of the field cooling mode, however, based on the measurements of the temperature dependence of magnetization and resistivity we do not confirm the presence of superconductivity in this material and we ascribe the negative magnetization to the complicated non-collinear magnetic structure. A switch to the antiferromagnetic order at about 150 K has been visible both on the M(T) and ρ(T) curves. The valence state of the Yb ions has been studied by X-ray photoemission spectroscopy. The valence band spectrum at the Fermi level exhibits the domination of the hybridized Yb(4f) and Fe(3d) states.  相似文献   

11.
Neutron diffraction and magnetic susceptibility studies of the two-dimensional coordination polymer Co(ox)(bpy-d8) are presented, where ox=C2O42− and bpy-d8=4,4′-bipyridine-d8 (fully deuterated). The neutron powder diffraction data reveal a second-order crystallographic phase transition at 290 K. Above 290 K, a disordered structure, space group Immm, is observed that is closely related to the ordered structure previously proposed on the basis of single crystal X-ray diffraction. At low temperatures, the structure is an ordered variant of the high-temperature phase with space group I222. In both phases, the Co ions are linked by the oxalate forming infinite chains that are crosslinked by the bpy ligands.The magnetic susceptibility follows qualitatively a quasi one-dimensional chain behavior. It exhibits a broad maximum around 35 K, corresponding to a strong antiferromagnetic coupling through the oxalate bridges. A kink at 9 K marks the onset of long-range antiferromagnetic ordering due to much weaker interchain magnetic interactions.The magnetically ordered structure determined from the low-temperature neutron diffraction data can be described with the propagation vector (1/2, 1/2, 1/2), i.e. a doubling of the unit cell in each principal direction. It is concluded that a significant antiferromagnetic interaction is mediated through the bpy ligands, although the Co-Co distance along these bridges is 11.4 Å.  相似文献   

12.
Exchange biasing of ferromagnetic layer deposited on the antiferromagnetic superlattice was investigated in (Co70Fe30/Ru)29.5/Ru/Co90Fe10 multilayers. Uniaxial magnetic anisotropy (KAF) was induced and tuned in the antiferromagentic superlattice by uniaxial substrate bending method through the inverse effect of magnetostriction. The exchange bias increased and tended to be saturated with increasing the KAF, while it was not observed at KAF=0.  相似文献   

13.
A piezoelectric-piezomagnetic superlattice (PPS) is proposed to present the magneto-electric (ME) coupling wherein electric polarization induces magnetization or vice versa through the layer's coherent strain. We reveal that in PPS, the interaction of electromagnetic waves with the correspondent alternative piezoelectric and piezomagnetic superlattices through their vibrations excites the piezoelectric and the piezomagnetic phonon polaritons simultaneously. The polaritons couple with each other to give rise to a stop band, in which double negative permittivity and permeability can be realized, however negative refraction could not occur. The coupling also results in the huge dynamic ME effect which attributes to the large ME voltage coefficient in a BaTiO3-CoFe2O4 superlattice as large as 14.9 V cm−1 Oe−1.  相似文献   

14.
The microwave dielectric and magnetic properties of Pb(Fe2/3W1/3)O3 multiferroic ceramics were investigated. A dielectric dispersion occurring in the frequency range 100 MHz-3 GHz and in a broad temperature range showed itself to be a powerful tool to detect magnetostrictive effects. The experimental results revealed the following remarkable features: the temperature dependence of fR (characteristic frequency) and the dielectric strength Δε (characteristic of the dispersion) enabled us to identify not only the para-ferroelectric (TC≈180 K) but also the para-antiferromagnetic (TN≈340 K) phase transitions, while magnetic measurements revealed the para-antiferromagnetic ordering and a weak superexchange interaction (TN2∼15 K). Additionally, both characterizations confirmed the existence of structural or magnetic instabilities around 250 K.  相似文献   

15.
We address the spin wave modes propagating in Fibonacci, Thue–Morse, and double period quasiperiodic magnonic superlattices. These structures are made of layers of a metamagnetic material alternating with layers of a nonmagnetic material, presenting mirror symmetry. Our calculations are carried out in the magnetostatic regime for the antiferromagnetic phase. Our model takes into account the presence of an external applied magnetic field, which is perpendicular to the interfaces of the superlattice, as well as the crystalline anisotropic contribution to the inner magnetic field. The magnetostatic bulk and surface modes are obtained by using the transfer matrix technique. The metamagnetic material considered here is FeBr2, however, our results can be extended to other materials. Our numerical results show the behavior of these modes, for small frequencies of the energy spectra. The results reported here can be experimentally observed by light scattering techniques.  相似文献   

16.
Dielectric permeability of superlattices has been calculated with regard to effects of spatial dispersion and two-dimensional nature of excitons. Dispersion of polaritons in the region of exciton resonance is discussed. The expressions have been obtained for the dispersion of surface waves with the inclusion or retardation effects and for different orientations of the surface with respect to the superlattice axis. In the simplest case the expressions have been obtained for the nonlinear (microscopic) polarizability tensor of the superlattice and the gyrotropy constant.  相似文献   

17.
Electrical and magnetic properties of the perovskite-type solid solution YCoxMn1−xO3 (x=0.20-0.60) have been studied at different temperatures and magnetic fields. Electrical conductivity measurements show a semi-conducting behaviour throughout the solid solution. The room-temperature conductivity increases with the Co content up to 33 at.%, and then decreases. The effective moment in the paramagnetic state shows a non-monotonic decrease, when the Co content increases. In the ordered state, the behaviour at low or null magnetic fields corresponds to a spin-glass or antiferromagnetic system, with a transition temperature, which raises with the Co content (up to 50 at.% Co), and then decreases. At high fields, all the solid solutions show a ferromagnetic behaviour, although there is a marked difference in their ferromagnetic cycles, at a threshold value of 33 at.% Co.  相似文献   

18.
By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solver, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector (π,π,π) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.  相似文献   

19.
The electronic structure and magnetic properties of the (2-amino-5-chloropyridinium)2CuBr4 compound were studied using the full potential augmented plane wave plus local-orbitals method (FP-APW+lo) within density functional theory. The Cu atoms are the magnetic centers, magnetic moments originate mainly from the Cu 3d and Br 4p states, leading to a total magnetic moment of 1.00 μB per molecule. There is an important hybridization between the Cu 3d and Br 4p states, which causes the magnetic interactions between the Cu centers to pass through the Br p-orbitals near the Cu atoms. According to the self-consistent total energies, it was found that in the ground state there exist antiferromagnetic interactions for both intraplanar and interplanar magnetic exchange, but the latter is much weaker than the former.  相似文献   

20.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号