首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

2.
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives , , and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (−1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.  相似文献   

3.
The dielectric constant, ε, and the d.c. conductivity, σ, were measured along the a-, b- and c-axes of (NH4)2ZnCl4 (AZC) crystal in the 300-450 K temperature range. Crystals of AZC grown from aqueous solutions containing excess of ZnCl2 were used. The value of the dielectric permittivity of AZC is extremely small compared to other ferroelectric crystals. Pronounced broad or step-like peaks at the phase transition temperatures were detected along the a- and b-axes, while ε along the c-axis is temperature independent up to the end of the measuring range. Reciprocal of the dielectric permittivity in the range of the commensurate to incommensurate phase transition obeys a relation similar to the Curie-Weiss law that is valid for second order ferroelectric/paraelectric phase transitions. The constants of the proposed relationship applied to the cooling run are given. The J-E characteristics along the three crystallographic axes were measured in the normal, incommensurate, commensurate and antiferroelectric phases. Hence, the type of conduction mechanism has been estimated. Parameters of Poole-Frenkel and Richardson-Schottky types of conduction mechanism have been determined. The effect of applied electric field on the conductivity measurement was also tested. Conductivity anomalies with different character were observed at the phase transition temperatures. The lnσ−1000/T dependence revealed thermal activation energy of conduction along the a-, b- and c-axes with different values in different phases of AZC.  相似文献   

4.
ZnO nanoparticles with the wurtzite structure were prepared by chemical methods at low temperature in aqueous solution. The size of the nanoparticles is in the range from about 10 to 30 nm. Ferromagnetic properties were observed from 2 K to room temperature and above. Magnetization versus temperature, M(T), and isothermal M(H) measurements were obtained. The coercive field clearly shows ferromagnetism above room temperature. An exchange bias was observed, and we related this behavior to the core-shell structure present in the samples. The chemical synthesis, structure, and defects in the bulk related to oxygen vacancies are the main factors for the observed magnetic behavior.  相似文献   

5.
A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ∼4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ∼400 nm and aspect ratio ∼12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur-sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.  相似文献   

6.
Fabrication and characterization of magnetic Fe3O4-CNT composites   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe.  相似文献   

7.
The potential of using encapsulation by MEA, DEA and TEA to control the morphology of ZnO powders was investigated. The crystallite and particle size decreased as a function of aminoalcohol concentration. We found that aminoalcohols can inhibit the crystal growth of ZnO along the c-axis. A steric effect by TEA more strongly influenced the formation of different ZnO shapes than did MEA and DEA. The value of the band gap was dependent on the crystallite size, particle size and particle shape.  相似文献   

8.
The depolarization temperature (Td) of piezoelectric materials is an important figure of merit for their application at elevated temperatures. This study focuses on the effect of BaTiO3 (BT) nanowires on Td and piezoelectric properties of morphotropic-phase-boundary 0.90NBT–0.05KBT–0.05BT ceramics. The results reveal that BaTiO3 nanowires can pin the domain wall, leading to the increase of coercive field (Ec) from 21.06 kV/cm to 34.99 kV/cm. The Td value of 0.90NBT–0.05KBT–0.05BT ceramics can be enhanced approximately 20 °C when using BT nanowires instead of BT solution as the raw material. Meanwhile, at the same polarization conditions, the piezoelectric constant of the ceramic added BT nanowires (172 pC/N) is decreased but still remains a larger value compared with those of other lead-free ceramics. The results imply that the addition of BT nanowires into NBT–KBT is a very effective route to improve Td.  相似文献   

9.
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc superconductivity (HTSC) for a disorder-free CuO2 plane based on an evaluation of local hole density (p) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO2 plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO2 plane in an underdoped regime of HTSC. The T=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This Mott physics plays a vital role for mediating the Cooper pairs to make Tc of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in Tc is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle α of the FeAs4 tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make Tc higher significantly.  相似文献   

10.
In this study NiO nanostructures were synthesized via combinational synthetic method (ultrasound-assisted biosynthesis) and immobilized on the glassy carbon electrode (GCE) as a highly sensitive and selective enzyme-less sensor for urea detection. NiO-NPs were fully characterized using SEM, EDX, XRD, BET, TGA, FT-IR, UV–vis and Raman methods which revealed the formation of NiO nanostructures in the form of cotton like porous material and crystalline in nature with the average size of 3.8 nm. GCE was modified with NiO-NPs in aqueous solution of cetrimonium bromide(CTAB). Highly adhesive NiO/CTAB/GO nanocomposite membrane has been formed on GCE by immersing NiO/CTAB modified GCE in GO suspension. CTAB has a major role in the production and immobilization of the nanocomposites on the GCE surface and the binding NiO nanoparticles on GO plates. In addition, CTAB/GO composition made a highly adhesive surface on the GCE. The resulting NiO/CTAB/GO/GCE contains potently sensitive to urea in aqueous environments. The response of as developed amperometric sensor was linear in the range of 100–1200 µM urea with R2 value of 0.991 and limit of detection (LOD), 8 µM. The sensor responded negligibly to various interfering species like glucose, uric acid and ascorbic acid. This sensor was applied successfully for determining urea in real water samples such as mineral water, tap water and river water with acceptable recovery.  相似文献   

11.
《Current Applied Physics》2019,19(11):1187-1194
A seed-mediated growth method was commonly applied to prepare one-dimension nanomaterials. However, some associated particles were unavoidable in the formation of target nanoparticles. Herein, we reported a modified method to prepare silver nanotriangles with higher uniform shape and particle size. The size and morphology of the formed nanoparticles could be controlled by regulating reaction conditions. The results showed that cetyl trimethyl ammonium bromide (CTAB) concentration and seed concentration were related with both the morphology and the particle size. The NaOH concentration, AgNO3 concentration, and the mole ratio of Vc/Ag+ mainly affected the particle size of the formed nanotriangles. The formation of silver nanotriangles may be due to the selective stacking of the new tiny nanoparticles and the oriented growth of silver seed crystals. The oxidizing action of Br/O2 existing in the CTAB system should be responsible for the final morphology of truncated triangular silver nanoplates.  相似文献   

12.
The effect of co-dopant M (M=gallium (Ga), aluminum (Al), and scandium (Sc)) on the formation, crystallite growth, optical band gap, photocatalytic activity, and phase stability of anatase-type titanium dioxide solid solutions (Ti1−2XNbXMXO2) containing the same amount of dopant niobium (Nb) that were directly formed as nanoparticles under mild hydrothermal conditions at 180 °C for 5 h was investigated. The composition range X of the anatase-type solid solutions (Ti1−2XNbXMXO2) depended on the co-dopant M, i.e., X=0.15-0.20 for M=Ga and Al, and X=0.33 for M=Sc. A remarkable increase in the lattice parameter c0 was detected in the solid solutions co-doped with M=Sc. The increase in the amount of co-dopant M=Ga and Al enhanced the crystallite growth of the anatase-type solid solutions under the hydrothermal conditions. The photocatalytic activity of the solid solutions (Ti0.80Nb0.10M0.10O2) co-doped with M=Sc, Ga, and Al increased in that order. The co-dopant M=Ga promoted the anatase-to-rutile phase transformation of the solid solutions at lower temperature.  相似文献   

13.
R. Ghosh 《Applied Surface Science》2009,255(16):7238-7242
MgxZn1−xO (x = 0.0-0.20) thin films have been deposited by sol-gel technique on glass substrates and the effect of growth ambient (air and oxygen) on the structural, and optical properties have been investigated. The films synthesized in both ambient have hexagonal wurtzite structure. The c-axis lattice constant decreases linearly with the Mg content (x) up to x = 0.05, and 0.10 respectively for air- and oxygen-treated films, above which up to x = 0.20, the values vary irregularly with x. The change in the optical band gap values and the ultraviolet (UV) peak positions of MgxZn1−xO films show the similar change with x. These results suggest that the formation of solid solution and thus the structural and optical properties of MgxZn1−xO thin films are affected by the growth ambient.  相似文献   

14.
We studied the doping dependence of the superconducting gap in La2−xSrxCuO4 (LSCO) by means of Andreev reflection measurements in Au/LSCO point-contact junctions. The Andreev reflection features were found to disappear at TcA close to the bulk Tc. The fit of the conductance curves with the BTK-Tanaka-Kashiwaya model gives good results if a (s+d)-wave gap symmetry is used. The low-temperature dominant isotropic gap component Δs follows very well the Tc vs. x curve, while the gap-like features observed by angle-resolved photoemission spectroscopy and tunneling scale with T. This confirms the different origin of these two energy scales at T<Tc.  相似文献   

15.
Compounds LiNi1−xSbxO2 (x=0, 0.1, 0.15, 0.2, 0.25) were synthesized by the two-step calcination method. The structural and morphological properties of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirms that the uniform solid solution has been formed in the as-prepared compounds without any impurities. It is shown that the crystal lattice parameters (a, c) of the Sb-doped compounds are bigger than those of pure LiNiO2 and the Sb-doped compound with x=0.2 consists of spherical-like nanoparticles with a mean grain size of 50 nm. The electrochemical performances of as-prepared samples were studied via galvanostatic charge-discharge cycling tests. The compound with x=0.2 exhibits excellent capacity retention during the charge-discharge processes due to its reinforced structural stability, and a discharge capacity of 102.4 mAh/g is still obtained in the voltage range of 2.5-4.5 V after 20 cycles. Thermal analysis further confirms that the structural stability of LiNi0.8Sb0.2O2 is superior to that of pure LiNiO2.  相似文献   

16.
Phonon dynamics was investigated on Y Mn1−xFexO3(0≤x≤0.20) hexagonal manganite polycrystals. Phonon modes were properly assigned using results obtained on Y MnO3 single crystal, by mixing the ab plane and the c axis optical responses. Upon increasing the Fe content, most of the phonon mode frequencies do not vary drastically. However, some modes involving Y and O atom displacements along the c axis are affected by doping. Indeed, a redshift of their transverse optical frequency was interpreted as an elongation of Y-O distance along the c-axis, resulting in a change in yttrium coordination.  相似文献   

17.
Urea-succinic acid crystals have been grown at room temperature from aqueous solution in the presence of maleic acid by a slow evaporation technique. The structural parameters were determined using powder X-ray diffraction (XRD) and found to have monoclinic symmetry (space group P21/m) with a=9.902, b=17.510, c=5.555 Å and α=γ=90°, β=96.46°. The transparency and optical analysis were carried out using UV-vis analysis. The optical band gap is found to be 4.71 eV. The presence of various functional groups was confirmed by FTIR analysis. The samples have shown piezoelectric behavior with a fairly good piezoelectric charge coefficient (d33) of 5 pC/N, when it is poled at 7 kV/cm. The hysteresis loop was plotted and the remnant polarization and coercive field were found to be 2.8 μC/cm2 and 4 kV/cm, respectively. The dielectric analysis was carried out as a function of temperature at various frequencies and the results were also discussed.  相似文献   

18.
In this paper, we report the existence of anisotropic behavior along the crystallographic axes in optical, electrical and thermal properties of lithium tri borate, a recently developed vacuum UV-NLO material. The variation of refractive index with the wavelength along the crystallographic axes was investigated by prism coupling method. The results of impedance spectroscopy measurement reveal the presence of a strong anisotropy in ionic conductivity and dielectric constant along the axes and also show the super-ionic conduction behavior along the c-axis with the activation energy of Δ∼0.20 eV. A thermo-mechanical study in the temperature range of 300-900 K indicates the existence of a strong variation in the linear thermal expansion coefficient (positive value along the a-axis, and negative value along the c-axis) of LiB3O5 crystals.  相似文献   

19.
Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling.  相似文献   

20.
New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl4, (NH4)2PtCl6, (NH4)2PdCl6, or (NH4)3RhCl6 with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA) n Me x Cl y salts (with Me?=?Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号