首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric spectroscopy of a short pitch and high spontaneous polarization ferroelectric liquid crystal mixture and its guest-host derivatives with different wt/wt ratio of anthraquinone blue dichroic dye has been studied over a wide frequency range of 50 Hz-1 MHz. The increase in dye concentration results in the decrease of the permittivity of the material in the SmC* phase, however, an opposite effect is observed in the SmA phase. The influence of bias voltage on the dielectric parameters has also been investigated. A new relaxation mode has been observed with a relaxation frequency of ∼300 kHz and dielectric strength of ∼5 at room temperature.  相似文献   

2.
The dielectric measurements in SmC* and SmA phases of a room temperature ferroelectric liquid crystal mixture FLC-6980 in the cells of different thickness in planer alignment have been carried out in the frequency range 100 Hz to 1 MHz. A relaxation mode (called NRM) whose dielectric increment is less than the Goldstone mode has been observed in the SmC* phase. This mode appears due to the surface effect. Goldstone mode and the soft mode was observable in the vicinity of SmC*-SmA transition temperature (T C*A). The dielectric parameters of the Goldstone mode, new mode and the soft mode have been studied as a function of frequency and temperature. The calculated values for fNRM, δεNRM and distribution parameter αNRM are found to be 325 kHz, 6 and 0.156 for 5μm thick planer cell at 37°C. It is seen that in the vicinity of theT C*A, soft mode obeys the Curie-Weiss law given by mean field theory. The results have been compared with materials of large spontaneous polarization.  相似文献   

3.
We present the results based on the electro-optic and dielectric properties of silica nanoparticle (SNP) doped ferroelectric liquid crystal (FLC) in SmC* phase. Switching time, spontaneous polarization and rotational viscosity decreases with increase in the silica concentration. An improvement in switching time after doping the silica nanoparticle is due to enhancement in anchoring energy exist between silica nanoparticle and ferroelectric liquid crystal. We noticed that the dielectric permittivity and dielectric strength decreases with increasing the concentration of silica nanoparticle in SmC* phase. Relaxation frequency increases with increasing the silica concentration and temperature in SmC* and decreases as we approaches towards transition temperature.  相似文献   

4.
In order to study the effect of mixing dye molecules in ferroelectric liquid crystals, we have investigated two ferroelectric liquid crystal samples CS1016 and Felix 17/000 along with their mixture with Anthraquinone dye. The measurements have been made in the frequency range 100 Hz-10 MHz, with the variation of temperature from 30 to 90 °C. The dielectric behaviour of dye mixed CS1016 is quite different from that of Felix 17/000. This different behaviour has been explained by determining other parameters like distribution parameter, dielectric strength and relaxation frequency, etc. The different nature shown by two different samples has also been explained by electro-optical measurements.  相似文献   

5.
The effect of several polar ester linkage groups incorporated in the molecular core of a chiral lactic acid derivative on self-assembling properties has been investigated by polarizing optical microscopy, small angle X-ray diffraction, differential scanning calorimetry, optical and electro--optical studies. The compound possesses the paraelectric smectic A* (SmA*) and ferroelectric smectic C* (SmC*) phases over a broad temperature range. Mesomorphic behaviour, spontaneous polarization, birefringence, optical transmission, dielectric anisotropy and structural properties of the self-assembled chiral material have been determined. The obtained results are discussed and compared with that of other liquid crystalline materials. Experimentally determined spontaneous polarization and tilt angle values are also used to elucidate the nature of SmC* to SmA* phase transition. The effect of polar ester linkages in the molecular core has also been discussed.  相似文献   

6.
7.
Effect of magnetic nanoparticles (nickel ferrite) doping on the dielectric and electro-optical properties of a ferroelectric liquid crystal mixture has been studied. In a doped ferroelectric liquid crystal mixture, dispersion of a small amount (0.25 wt.%) of nickel ferrite nanoparticles decreases the polarization and improves the response time compared to an undoped mixture. The significant changes in the polarization and response time are explained on the basis of dipole–dipole interaction and anchoring phenomena. Dielectric permittivity also increases with increasing the temperature of the SmC* phase and shows a reduction in dielectric loss in a doped sample. A Goldstone mode is clearly observed at ~200 and ~500 Hz in an undoped and a doped sample, respectively.  相似文献   

8.
Uniform and defect-free homeotropic (HMT) alignment of ferroelectric liquid crystals (FLC) cells have been successfully achieved by a non-contact technique, namely, magnetic field-assisted alignment; otherwise such alignment is difficult by conventional methods. Frequency-temperature dependent dielectric studies, confirm the presence of stable molecular relaxation around the short axis of FLC molecule, throughout SmC*-SmA* phases with minimum low-frequency fluctuations, known as Goldstone modes. The proposed non-contact alignment method, combined with FLC-based HMT configuration, would be much promising for integrated-optoelectronic devices, such as micro-mirror displays.  相似文献   

9.
Frequency and temperature dependence of dielectric parameters of a liquid crystalline compound (S)-4-(1-methylheptyloxycarbonyl)phenyl-4′-(6-pentanoyloxyhex-1-oxy)biphenyl-4-carboxylate under planar orientation of the molecules have been investigated in the frequency range 1 Hz-10 MHz. This compound possesses smectic paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmCA*) phases. Dielectric spectroscopy suggests the existence of a relaxation mechanism in the SmA* phase, which behaves as a soft mode. In the SmC* phase two relaxation modes are observed. One mode continues from the SmA* phase with decreasing dielectric strength and the other has characteristics of the Goldstone mode. Two dielectric relaxation modes have been observed for the SmCA* phase. These two modes are related to the antiferroelectric ordering and the helical structure of the SmCA* phase.  相似文献   

10.
Thermodynamic and electro-optical characterization of a ferroelectric liquid crystalline material, namely ((S) (+) 4-(1-methylheptyloxy) phenyl 4′-octyloxybiphenyl-4-carboxylate) possessing paraelectric SmA*, ferroelectric SmC*, hexatic SmBh* and SmI* phases has been carried out. Phase identification has been done by optical and thermodynamic studies. Switching parameters viz. spontaneous polarization, switching time and rotational viscosity have been determined. The spontaneous polarization has been found to increase with decreasing temperature in SmC* phase. The switching time is found of the order of few milliseconds.  相似文献   

11.
Mixture of two liquid crystalline components exhibits the antiferroelectric phase in a broad temperature range at room temperatures, though the two components separately do not show an antiferroelectric phase in a temperature range applied. The dielectric spectroscopy technique combined with measurements of the selective light reflection was used for identification and characterization of the phases and subphases existing in the mixture. In the SmC*A phase, the low frequency mode characteristic of antiferroelectric phase has been detected. In the broad temperature range between SmC*A and SmA* phases, no relaxation mode has been detected. The soft mode registered near the phase transition to SmA* phase follows the Curie-Weiss law.  相似文献   

12.
Studies of structural and phase properties obtained on several ferroelectric liquid crystalline materials with 2-alkoxypropionate group used as a chiral centre and without any lateral substitution are presented. In dependence on the chiral chain length these compounds exhibit the cholesteric N* phase, the ferroelectric smectic C* and a low-temperature SmX phase. Values of the spontaneous polarization and spontaneous tilt angle have been determined within the whole range of the SmC* phase. A low-temperature SmX phase has been identified as the orthogonal hexatic SmB* phase. The molecular parameters, namely the layer spacing in the SmC* and SmB* phases and the average intermolecular distances (D) between neighbouring parallel molecules in all investigated phases have been determined using the results of the X-ray diffraction obtained on non-oriented samples. The effect of the chiral chain length on mesomorphic, structural and physical properties of the studied ferroelectric liquid crystalline materials is discussed.  相似文献   

13.
Structural (helical pitch), electro-optical (tilt angle, spontaneous polarization and response time) and dielectric (Goldstone mode) characterizations have been performed on two pure ferroelectric liquid crystals of a biphenyl alkyloxy benzoate series and they show the N*–SmA*–SmC* phase sequence. The different results are discussed: the helical pitch, the spontaneous polarization and the rotational viscosity which is determined as a function of temperature by two methods using electro-optical or dielectric measurements. An Arrhenius behaviour of the rotational viscosity is found for the two compounds. The corresponding activation energies are determined.  相似文献   

14.
We study the effects of mixing ferroelectric and antiferroelectric liquid-crystal compounds (FLCs and AFLCs) when the former are strictly synclinic and the latter strictly anticlinic, i.e. one mixture component exhibits only SmC* and the other only SmC a* as tilted phase. Three different paths between syn- and anticlinicity were detected: transition directly between SmC* and SmC a*, transition via the SmCβ* and SmCγ* subphases, or by “escaping” the clinicity frustration by reducing the tilt to zero, i.e. the SmA* phase is extended downwards in temperature, separating SmC* from SmC a* in the phase diagram. The most common path is the one via the subphases, demonstrating that these phases appear as a result of frustration between syn- and anticlinic and, consequently, between syn- and antipolar order. For assessing the role of chirality, we also replaced the FLC with non-chiral synclinics. With one of the AFLCs, the route via supbhases was detected even in this case, suggesting that chirality --although necessary-- does not have quite the importance that has previously been attributed to the appearance of the subphases. The path chosen in the mixture study seemed to be determined mainly by the synclinic component, the subphase induction occurring only when the SmA*-SmC* transition was second order.  相似文献   

15.
The SmA*–SmC* phase transition was studied by measuring the temperature and electric field dependences of the optical tilt angle, the electric polarisation and the dielectric spectra collected in a wide frequency range. Critical behaviour of the phase transition was analysed by varying the length of the fluorinated part of the alkyl terminal chain and by differing fluorine substitution in the terphenyl core. Both tilt and polarisation show tricritical mean-field behaviour for all homologues with n?>?2. Almost all coefficients that describe the SmA*–SmC* transition in the frame of the Landau theory were derived for homologue series. Double fluorine substitution in the central ring of the core seems to promote the ‘de Vries'-type smectic A*–C* phase transition with a little layer shrinkage. These well correspond with the lower tilt angle and smaller changes of the birefringence at the phase transition compared to the other homologues.  相似文献   

16.
We report the effect of an anisotropic polymer network formed from an achiral photoreactive monomer in a short-pitch chiral SmC* phase on the distortion and the unwinding of the helical structure of the ferroelectric phase. The electro-optical behaviour and ferroelectric properties were experimentally determined for films containing various polymer concentrations. The critical field, Eu, for the transition from the distorted structure to the homogeneous state was measured as a function of polymer concentration. A linear increase of Eu versus polymer concentration was observed, showing that the helical structure of the short-pitch SmC* phase was stabilized by the polymer network. This behaviour was expected to be a consequence of the increase of the apparent elastic constants of the ferroelectric liquid crystal stabilized by the anisotropic polymer network films. The polymer network morphology was investigated using atomic-force microscopy, revealing a twisted structure of the polymer fibers. This twisted structure was transferred onto a polymer network during the polymerization process within a short-pitch SmC* phase. The increase of the apparent elasticity can then be interpreted by a strong interaction between polymer network and the liquid-crystal molecules. From our experimental data, the coupling coefficient, Wp, characterizing this interaction was evaluated for all studied polymer concentrations.  相似文献   

17.
In order to study the effect of mixing dye in ferroelectric liquid crystal (FLC) materials, the phase transition temperature and electro-optical properties of azo dye doped FLC samples have been investigated. All the properties have been found to be changed drastically. The results have revealed that not only the SmC^*- SmA^* transition temperature decreased markedly by the addition of azo-dye, but also dye-doped FLC had lower threshold voltage and saturation voltage than the pure FLC.  相似文献   

18.
The continuous growing demand for nanoscience applications and the improvement in the performance of liquid crystal based devices has been extensively required by the technological world. Recent progress in the field of liquid crystals has found its practical implementation in various display and non display devices which experiences obstacle due to impurity effects that reduces its performance. The dispersion of nanoparticles in liquid crystal medium helps in the reduction of impurity ions and thus improving the performance of liquid crystal based devices. The present work is based on the collective dielectric relaxation processes that have been observed in antiferroelectric liquid crystal (AFLC) mixture W1000 dispersed with 0.1% wt/wt and 0.3% wt/wt concentrations of graphene oxide. Graphene oxide itself favors vertical alignment and the coupling of AFLC W1000 mixture with graphene oxide affects its molecular ordering. This has been confirmed from the polarizing optical micrographs. The dielectric relaxation modes have been observed with and without the application of bias voltage in SmC* to SmCA* phase transition during cooling cycle. The appearance and disappearance of PL, PH and X modes have been observed and are explained on the basis of molecular interactions. Graphene oxide dispersed system favors homeotropic alignment (dark state) and the application of bias field will convert it into homogenous alignment (bright state). Graphene oxide dispersion find prospective applications in good contrast display devices, supercapacitors, electronic gadgets, rechargeable batteries. Electro optical results unveil the faster response time, decreased rotational viscosity and spontaneous polarization with no change in tilt angle for the dispersed system. These observations can be exploited in photonic switches with sub millisecond response time which are required for fabricating faster liquid crystal devices.  相似文献   

19.
The second-order nonlinear optical properties of ferroelectric liquid crystalline polymer have been studied. Angular phase-matched Second-Harmonic Generation (SHG) is observed in the chiral smectic C (SmC*) phase of siloxane copolymer with chiral mesogen in the side chain. The effective nonlinear optical coefficient deff under the phase-matching condition is determined. The intense SHG is observed even in the crystalline phase by cooling down from the SmC* phase under the electric field. The effective coefficient of SHG in the crystalline phase is more than ten times larger than that of the phase-matched SHG in the SmC* phase. The enhancement of SHG in the crystalline phase is observed only in a homeotropically aligned cell and maintained even in the non-biased state for at least several days. The angular dependence of the SHG in the crystalline phase is confirmed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号