共查询到20条相似文献,搜索用时 15 毫秒
1.
B.J. Kennedy K. Yamaura E. Takayama-Muromachi 《Journal of Physics and Chemistry of Solids》2004,65(6):1065-1069
High resolution X-ray powder diffraction studies have shown SrRhO3 to transform from an orthorhombic Pnma structure at room temperature through an intermediate Imma phase to a tetragonal I4/mcm structure near 800 °C. The orthorhombic Imma phase exists over a very limited temperature range, of less than 20°. The diffraction data suggests the Pnma to Imma transition is continuous and demonstrates that the Imma-I4/mcm transition is first order. 相似文献
2.
Junji Awaka Norihito Kijima Shoichi Nagata 《Journal of Physics and Chemistry of Solids》2008,69(7):1740-1746
High-purity powder specimens of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 have been successfully synthesized by solid-state chemical reaction. The Rietveld refinements from X-ray powder diffraction data verified that these compounds have the garnet-type structure (space group , No. 230) with the lattice constant of a=12.596(2) Å for AgCa2Mn2V3O12 and a=12.876(2) Å for NaPb2Mn2V3O12. Calculation of the bond valence sum supported that Mn is divalent and V is pentavalent in these garnets. Estimation of the quadratic elongation and the bond angle variance showed that the distortions of the MnO6 octahedra and the VO4 tetrahedra are significantly suppressed. Our new results of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 are compared to those of AgCa2M2V3O12 and NaPb2M2V3O12 (M=Mg, Co, Ni, Zn). 相似文献
3.
4.
A theoretical study on the stabilities of the crystal structures of K2Al2B2O7 (KABO) and Na2Al2B2O7 (NABO) has been carried out using density functional theory with generalized-gradient corrections. All structures have been optimized by minimizing the total energies with respect to lattice constants and to the atomic coordinates within the unit cell. In the case of KABO, the structure with space group P321 always takes energy advantage over the whole volume range studied, whereas on both volume expansion and contraction, the original NABO structure becomes unstable, taking a structure transition from its space group to the P321 space group of KABO structure. The theoretical predictions were well realized in the experimental results on the structure changes of the (K1−xNax)2Al2B2O7 solid solution system. 相似文献
5.
Andrzej Grzechnik Vladimir Dmitriev 《Journal of Physics and Chemistry of Solids》2005,66(10):1769-1774
Dilithium zirconium hexafluoride, Li2ZrF6 (, Z=1), is studied at high pressures using synchrotron angle-dispersive X-ray powder diffraction in a diamond anvil cell at room temperature. At atmospheric conditions, it has a structure with all the cations octahedrally coordinated to fluorine atoms. Above 10 GPa it transforms reversibly to a new polymorph (C2/c, Z=4), in which the coordination polyhedron of the Zr atoms is a distorted square antiprism, while the Li atoms are in the octahedral coordination. The LiF6 octahedra form layers parallel to (100) that are connected by zig-zag chains of the edge-sharing Zr polyhedra running in the [001] direction. The relative change in volumes per one formula unit for both polymorphs is 6% at 11.8 GPa. The relations to other A2BX6-type structures are discussed. 相似文献
6.
Cristian E. Botez David Carbajal Ronald J. Tackett 《Journal of Physics and Chemistry of Solids》2010,71(11):1576-1580
We have used synchrotron X-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline KH2PO4 (KDP) upon heating within the 30-250 °C temperature interval. Our data show evidence of a polymorphic transition at T∼190 °C from the room-temperature tetragonal KDP phase to a new intermediate-temperature monoclinic KDP modification (spacegroup P21/m and lattice parameters a=7.590, b=6.209, c=4.530 Å, and β=107.36°). The monoclinic RDP polymorph remains stable upon further heating to 235 °C, and is isomorphic to its RbH2PO4 and CsH2PO4 counterparts. 相似文献
7.
Haoyi Wu Yihua Hu Bodai Zeng Zhongfei Mou Liuyong Deng 《Journal of Physics and Chemistry of Solids》2011,72(11):1284-1289
The long afterglow phosphors Sr1.97−xBaxMgSi2O7:Eu2+0.01, Dy3+0.02 (x=0, 0.4, 0.8, 1.2, 1.6 and 1.97) were synthesized via high temperature solid-state reaction. The phase identification reveals that the crystal plane spacing becomes greater with the decrease in the Sr/Ba ratio. Phase transition occurs when x=1.97. A nonlinear relationship between the emission peak and the crystal plane spacing is obtained with the decrease of the Sr/Ba ratio. This ascribes to the splitting of the 5d level of the Eu2+ and the change of the crystal field strength. The duration of the afterglow becomes shorter with the decrease of the Sr/Ba ratio. It may ascribe to deeper trap depth, lower trap concentration and the embarrassment of the transfer of carriers. 相似文献
8.
Pooja Varshney Sarita Afaq Ahmad Saba Beg 《Journal of Physics and Chemistry of Solids》2006,67(11):2305-2309
Electrical conductivity of ZrO2 doped with Pb3O4 has been measured at different temperatures for different molar ratios (x=0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06). The conductivity increases due to migration of vacancies, created by doping. The conductivity increases with increase in temperature till 180 °C and thereby decreases due to collapse of the fluorite framework. A second rise in conductivity at higher temperatures beyond 500-618 °C is due to phase transition of ZrO2. DTA and X-ray powder diffraction were carried out for confirming doping effect and transition in ZrO2.The addition of Pb3O4 to ZrO2 shifted the phase transition of ZrO2 due to the interaction between Pb3O4 and ZrO2. 相似文献
9.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity. 相似文献
10.
A. Wakowska L. Gerward J. Staun Olsen A. Sieradzki W. Morgenroth 《Journal of Physics and Chemistry of Solids》2008,69(4):815-821
The temperature evolution of the lattice parameters measured from 295 to 125 K exhibits a small instability below Tc≈278 K, indicating ferroelastic properties of Na2TiGeO5. The behavior is related to the specific crystal structure built of polyhedral layers with shared TiO5 pyramids and GeO4 tetrahedra, alternating with layers of Na+ cations. Antiparallel alignment of the short apical titanyl bond in adjacent rows of the polyhedral layer gives rise to spontaneous strain, when a distortion of the TiO5 groups occurs. Single-crystal structures determined at room temperature and 120 K suggest that {1 1 0} domains, developing below Tc, entail a tetragonal-to-orthorhombic symmetry change. The mechanism is attributed to a shortening of the O–O distance between the polyhedral layers, and to minor shifts of the positions of the Ti atoms and the correlated oxygen atoms along the c-axis. The structure distortion, however, is too small to allow any unambiguous determination of the symmetry-breaking effects. The bulk modulus and its pressure derivative have been determined as B0=89(2) GPa and . A pressure-induced phase transformation takes place at Pc≈12.5 GPa, presumably to an orthorhombic structure. The pressure effect on the transition temperature is given by ΔTc/ΔP≈1.76 K/GPa. 相似文献
11.
Yoshiki Ozaki Mizuhiko Ichikawa Torbjörn Gustafsson 《Journal of Physics and Chemistry of Solids》2004,65(6):1095-1102
Crystal structure of Rb3D(SeO4)2 has been investigated at 25 K (below the transition temperature Tc=95.4 K) by single-crystal neutron diffraction. Accompanying the transition, the SeO4 groups, which are all equivalent in the phase above the transition (space group A2/a), split into eight nonequivalent groups in a superlattice (a×2b×2c, space group A2) in the low-temperature phase. Based on the D atom positions obtained, each of the SeO4 groups was identified to be in the state closer to a HSeO4− ion or to a SeO42− ion and the dipole arrangement of SeO4-D-SeO4 dimer was revealed. This dipole arrangement has ‘ferri’ structure along the polar b-axis, but ‘antiferro’ structure in the plane perpendicular to the b-axis. These results are consistent with the characteristics found in the earlier dielectric measurements. 相似文献
12.
Jianjun Liu Chun-gang DuanM.M Ossowski W.N MeiR.W Smith J.R Hardy 《Journal of Physics and Chemistry of Solids》2002,63(3):409-414
Structural phase transition in AgNO3 at high temperature is simulated by molecular dynamics. The simulations are based on the potentials calculated from the Gordon-Kim modified electron-gas formalism extended to molecular ionic crystals. AgNO3 transforms into rhombohedral structure at high temperature and the phase transition is associated with the rotations of the NO3 ions and displacements of the NO3 and Ag ions. 相似文献
13.
Eriko Ohshima Keiji KusabaSinji Onodera Masae Kikuchi 《Journal of Physics and Chemistry of Solids》2002,63(3):419-423
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions. 相似文献
14.
Ba5−xLaxNb4−xTixO15 solid solutions were prepared by solid state reaction method. Structural analysis for the stoichiometric phases was performed for x=0, 1, 2 and 3 by Rietveld analysis of neutron powder diffraction data. The x=0, 1 and 2 members could be refined in the space group P-3m1 (stacking sequence chhcc, polytypoid 5 H). There is a decrease in cell volume as x increases. La3+ occupies preferentially the A2 site (Wyckoff site 2d) and Ti4+ the B2 site (Wyckoff site 2c). As x increases there is an increase of the global instability index (GII) (which is a measure of the extent to which the BVS rule is violated over the whole structure) indicating the presence of intrinsic strains large enough to cause instability at room temperature. This strain is responsible for a structural change for the member with x=3, which could be refined in the space group P-3c1 (stacking sequence (chhcc)2, polytypoid 2×5H=10H). This change in space group is associated with a cooperative rotation of (Nb/Ti)O6 octahedra around the c-axis, necessary to accommodate the smaller La3+ ion in the cuboctahedral cavity. 相似文献
15.
B. Staśkiewicz I. Turowska-Tyrk J. Baran Cz. Górecki Z. Czapla 《Journal of Physics and Chemistry of Solids》2014
The work presents a detailed analysis of the sequencing of the structural phase transitions in NH3(CH2)3NH3CdCl4 crystal by differential scanning calorimetry (DSC), X-ray, infrared, far infrared and Raman spectroscopy. DSC studies have shown that in analyzed crystal occurring one reversible continuous phase transition at 375/374 K (on heating/cooling). Observed in Nujol and Fluorolube mulls in the wide temperature range between 296 K and 413 K spectral changes through the structural phase transition can be attributed to an onset of motion of cations. An assignment of some bands due to internal modes has been also proposed. 相似文献
16.
S.E. Ziemniak A.R. Gaddipati P.C. Sander 《Journal of Physics and Chemistry of Solids》2005,66(6):1112-1121
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature. 相似文献
17.
The room temperature structure of KOCN has been successfully refined in space group I4/mcm. The OCN anion is disordered through 180° head-tail flipping and the positional coordinates and displacement parameters could not be separated for the N and O end atoms. The displacement parameters are compared for isomorphous KOCN, KN3 and KSCN. 相似文献
18.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate. 相似文献
19.
Dorthe B. Ravnsbæk 《Journal of Physics and Chemistry of Solids》2010,71(8):1144-1149
Tuning the hydrogen storage properties of complex metal hydrides is of vast interest. Here, we investigate the hydrogen release and uptake pathways for a reactive hydride composite, LiBH4−NaAlH4 utilizing in situ synchrotron radiation powder X-ray diffraction experiments. Sodium alanate transforms to sodium borohydride via a metathesis reaction during ball milling or by heating at T∼95 °C. NaBH4 decomposes at ∼340 °C in dynamic vacuum, apparently directly to solid amorphous boron and hydrogen and sodium gas and the latter two elements are lost from the sample. Under other conditions, T=400 °C and p(H2)=∼1 bar, NaBH4 only partly decomposes to B and NaH. On the other hand, formation of LiAl is facilitated by dynamic vacuum conditions, which gives access to the full hydrogen contents in the LiBH4−NaAlH4 system. Formation of AlB2 is observed (T∼450 °C) and other phases, possibly AlBx or Al1−xLixB2, were observed for the more Li-rich samples. This may open new routes to the stabilization of boron in the solid state in the dehydrogenated state, which is a challenging and important issue for hydrogen storage systems based on borohydrides. 相似文献
20.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K). 相似文献