首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

2.
New [ML(H2O)2] complexes (M = Co2+, Ni2+, or Cu2+; H2L = diphenylthiocarbazide) were synthesized and studied using IR and diffuse reflection electronic spectroscopy, magnetic chemistry, conductometry, and DTA. The metals were shown to coordinate L2–through nitrogen and sulfur atoms. The complex [CuL(H2O)2] is a dimer.  相似文献   

3.
Self‐assembled bi‐ and polymetallic complexes of CoII, NiII, ZnII, and CdII were obtained by the reaction of 4,4′‐azopyridine (azpy) with metal tri‐tert‐butoxysilanethiolates (Co, 1 ; Cd, 2 ), acetylacetonates (Ni, 3 ; Zn, 4 ), and acetates (Cd, 5 ). All compounds were characterized by single‐crystal X‐ray structure analysis, elemental analysis, FTIR spectroscopy, and thermogravimetry. Complexes 1 , 2 and 4 , 5 exhibit diverse structural conformations: 1 is bimetallic, 2 and 4 are 1D coordination polymers, and 5 is a 2D coordination framework formed from bimetallic units. The obtained complexes contain metal atoms bridged by a molecule of azpy. The luminescent properties of 1–5 were investigated in the solid state.  相似文献   

4.
驰豫效率;α-酮戊二酸-2;4-二硝基苯腙稀土配合物的合成与表征  相似文献   

5.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   

6.
A 1:1 synthesis of 2-quinolylhydrazine with 2,2′-pyridil yields the hydrazone 2,2′-pyridil-mono-(2-quinolylhydrazone). In either the Z or E isomeric configuration, the molecule can serve as a tridentate ligand. Equilibrium studies were carried out to determine the effects of pH and concentration of ligand and metal on the distribution of the extracted complex into methyl isobutyl ketone. Graphical analysis of the slopes of the plot of the logarithm of the distribution coefficient vs pH, log [ligand], and log [M(II)] will determine the stoichiometry and polymerization of the complex. In the extraction of Cu(II), Ni(II), and Co(II), there is a small change in log D, where D is the distribution coefficient, with pH indicating the presence of a weakly dissociated ligand. Ligand:metal (1:1) ion-paired species are extracted, each having three absorption peaks in the region 400-550 nm. While a spectrophotometrtc method for each element does not seem feasible due to simultaneous extraction and overlapping absorbances, an extractive-atomic absorption method for the analysis of 1.6 ppm of Cu(II) is presented. Excesses of 20-70 ppm Co(II), Zn(II), Cd(II), Cl, NO3, and SO42− do not interfere.  相似文献   

7.
Two Schiff base ligands, 2-{E-[(5-phenyl-6H-1,3,4-thiadiazin-2yl)imino]methyne}-1-naphthol (L1H) and 5-nitro-2-{[(5-phenyl-6H-1,3,4-thiadiazin-2-yl)imino]methyne}phenol (L2H) have been prepared from 5-phenyl-6H-1,3,4-thiadiazin-2-amine (A), 2-hydroxynaphthaldehyde (1) and 2-hydroxy-5-nitrobenzaldehyde (2) Mononuclear Co(II), NiII and CuII complexes of the ligands have been prepared by using CoII, NiII and CuII salts with a 1:2 metal:ligand ratio. It was determined that the bidentate behavior of the ligands is accomplished via the phenolic oxygen and the azomethine nitrogen atoms. The structures of the ligands and their complexes were identified by using elemental analyses, i.r., 1H-n.m.r. spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (t.g.a.).  相似文献   

8.
9.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

10.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula (M(CH3-xClxCOO)2QuinNO) (when M=Co(II), Ni(Il); X=l, 2 and 3 and when M=Cu(II), X=1 and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCl3COO)2 (QuinNO)3]. The adducts isolated are soluble in common organic solvents.  相似文献   

11.
Summary N-formamidosalicylaldimine (H2SF) andN-acetamidosalicylaldimine (H2SA) complexes of CuII, NiII and CoII have been synthesized and characterized by analytical, spectroscopic and magnetic data. The ligands coordinate to the metalvia the hydroxyl, carbonyl and imino groups to yield normal paramagnetic and insoluble complexes which decompose above 250°.  相似文献   

12.
The synthesis and characterization of a new series of iron(II) clathrochelate complexes, including the first example of a binuclear covalently linked c1athrochelate complex, is reported. The ligand system is based on the bifunctional chelate 2,3-butanedione oxime hydrazone which forms a tris-complex with iron(II). The c1athrochelate is completed by capping the complex with both a boronic acid/oxime capping reaction and a formaldehyde/hydrazone capping reaction. Electrochemical and spectroscopic characterizations of the complexes are discussed.  相似文献   

13.
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate.  相似文献   

14.
The Schiff base‐containing pendant monoaza crown ether HL1, HL2, HL3 and HL4 have been synthesized by condensation of salicylaldehyde with N‐(4‐aminoaryl) monoaza crown ethers, which were prepared conveniently from 4‐nitro‐N, N‐di(hydroxyethyl) aniline or 4‐nitrobenzyl chloride via cyclization or condensation and reduction. The structures of HL1—HL4 were verified by 1H NMR, IR spectra, MS and elemental analysis. Moreover, the oxygenation constants (KO2) and thermodynamic parameters (δH0 and δS0) of their cobalt(II) complexes were determined in the range of ?5 °C to 25 °C, and the effect of crown ring bonded to a Schiff base on the dioxygen affinities of cobalt(II) complexes was also observed as compared to the uncrowned analogue (CoL).  相似文献   

15.
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff bases derived from o-aminobenzoic acid with salicylaldehyde and its 5-chloro and 5-bromo derivatives have been prepared. The 1:1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility and electronic spectra of Cu(II) complexes indicate the nonplanar binuclear structures while that of Ni(II) and Co(II) show their paramagnetic octahedral geometry. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type (Cu·L)2, Ni·L·3H2O and Co·L·3H2O are formed having solvent molecule in coordination with the metal ion. The monopyridine and monoammonia adducts of Cu(II) complexes were found to be monomeric.  相似文献   

16.
Co(OAc)2 reacts with oxamide dioxime (H2oxado) in water in the presence of ClO4 ions to produce [Co(Hoxado)2(H2oxado)]ClO4 · 6H2O ( 1 ), where Hoxado is the anion of H2oxado, derived from the deprotonation of one of the two hydroximinic groups, and in which oxidation of CoII to CoIII (in air) had occurred. 1 is the first example of a salt in which the cation, [Co(H2oxado)3]3+, is doubly deprotonated to generate the chiral cation, [Co(Hoxado)2(H2oxado)]+. The central cobalt cation is pseudo‐octahedrally coordinated by six nitrogen atoms. In the solid state, the complex cations form centro‐symmetric dimers via O–H ··· O bridges. The bulk structure is consolidated by an extended three‐dimensional network of O–H ··· O and N–H ··· O bridges that interconnect the ionic constituents and the water molecules.  相似文献   

17.
A new organoborate ligand, hydro(benzoyl)(phthalyl)borate has been synthesized as its potassium salt (KL) and treatment of KL with one equivalent of MCl2•6H2O gave complexes ML(H2O)x•Cl [x=2, M=Co(II), Ni(II); x=1, M=Cu(II)]. All compounds were characterized by elemental analysis, FTIR, 1H NMR, ESI MS, UV-Vis techniques, conductivity and magnetic data measurements. Spectroscopic results suggest a square planar geometry in the Cu(II) complex, while the Co(II) and Ni(II) complexes possess an octahedral geometry. Antibacterial activities (in vitro) of the ligand and its metal complexes were studied against two Gram positive (B. subtillis and B. magterium) and two Gram negative bacteria (E. Coli and S. boydi) at a single concentration (75 μg/mL) by using the Disc diffusion method. Antifungal activities (in vitro) were also checked for the compounds by using the same method against Candida albicans 10261, Penicillium sp. and Asperjillius niger., at a single concentration (50 μg/mL). The results showed that all the metal complexes, specially the nickel(II) complex, have higher antibacterial and antifungal activities than the corresponding potassium salt.  相似文献   

18.
A novel hydrazone ligand derived from condensation reaction of 3‐hydroxy‐2‐naphthoic hydrazide with dehydroacetic acid, and its Ni(II), Cu(II) and Co(II) complexes were synthesized, characterized by spectroscopic, elemental analyses, magnetic susceptibility and conductivity methods, and screened for antimicrobial, DNA binding and cleavage properties. Spectroscopic analysis and elemental analyses indicated the formula, [MLCl2], for the complexes; square planar geometry for the nickel, and tetrahedral geometry for copper and cobalt complexes. The non‐electrolytic natures of the complexes in Dimethyl Sulphoxide (DMSO) were confirmed by their molar conductance values in the range of 6.11–14.01 Ω?1cm2mol?1. The copper complex had the best antibacterial activity against Staphylococcus aureus (ATCC 29213). DNA cleavage activities of the compounds, evaluated on pBR322 DNA, by agarose gel electrophoresis, in the presence and absence of oxidant (H2O2) and free radical scavenger (DMSO), indicated no activity for the ligand, and moderate activity for the complexes, with the copper complex cleaving pBR322 DNA more efficiently in the presence of H2O2. When the complexes were evaluated for antibacterial and A‐DNA activity using Molecular docking technique, the copper complex was found to be most effective against Gram‐positive (S. aureus) bacteria. [CuLCl2] showed good hydrogen bonding interaction with the major‐groove (C2.G13 base pair) of A‐DNA. Density functional theory (DFT) calculations of the structural and electronic properties of the complexes revealed that [CuLCl2] had a smaller HOMO‐LUMO gap, suggesting a higher tendency to donate electrons to electron‐accepting species of biological targets.  相似文献   

19.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

20.
Six complexes, M(HL)2 · nH2O (M=Co, Ni and Fe; n=4) with two ligands, 2-carboxy-benzaldehydebenzoylhydrazone (H2L1) and 2-carboxybenzaldehyde-(4′-methoxy)benzoylhydrazone (H2L2), have been synthesized and characterized on the basis of elemental analyses, molar conductivities, i.r. spectra and thermal analyses. In addition, the suppression ratio for O2- (a) and the suppression ratio for OH· (b) were determined with a 72 spectrophotometer. The 50% inhibition [IC50 (a) and IC50 (b)] of the complexes were studied. This study demonstrated that the complexes have activity in the suppression of O2- (a) and OH· (b). In general, the antioxidative activities increased as the concentration of these complexes increased up to a selected extent. The complexes exhibit more effective antioxidants than the ligands and the series of the ligand (H2L2) are better than the series of the ligand (H2L1) do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号