首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.  相似文献   

2.
The moving behaviour of two- and three-particles in a pressure-driven flow is studied by the lattice Boltzmann simulation in two dimensions. The time-dependent values, including particles' radial positions, translational velocities, angular velocities, and the x-directional distance between the particles are analysed extensively. The effect of flow Reynolds number on particle motion is also investigated numerically. The simulation results show that the leading particle equilibrium position is closer to the channel centre while the trailing particle equilibrium position is closer to the channel wall. If Reynolds number Re is less than 85.30, the larger flow Reynolds number results in the smaller x-directional equilibrium distance, otherwise the x-directional distance increases almost linearly with the increase of time and the particles separate finally. The simulation results are helpful to understand the particle-particle interaction in suspensions with swarms of particles.  相似文献   

3.
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.  相似文献   

4.
The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. 011 the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.  相似文献   

5.
Ran Li 《中国物理 B》2022,31(11):114501-114501
The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities. The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow. In this study, a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow. It is shown by particle image velocimetry (PIV) that the velocity of chute granular flow conforms to Silbert's formula. And the velocity of the detector is greater than that of the granular flow around it. By decomposing the velocity into sliding and rolling velocity, it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling. The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.  相似文献   

6.
陈钢  程成 《中国物理快报》2008,25(10):3666-3669
The kinetic process of Sr atom metastable-metastable transition lasers in He-St longitudinal pulsed discharge is analysed and a concise self-consistent physical model is developed. The temporal evolutions of discharge parameters, main paxticle densities, the electron temperature, and the lasing pulses are numerically calculated. The results provided by the model agree well with the experiment, and the temporal behaviour of each laser pulse is explained successfully by the simulation results.  相似文献   

7.
This paper reports a method to generate tunable bottle beams using an ultrasonic lens, by which the bottle position can be precisely adjusted with the change of the acoustic frequency. Therefore, the position of a single particle or bubble in liquid can be manipulated without using phased array which is costly and huge with complex circuits. Furthermore, we introduced this method to multiple bubble manipulation using acoustic holography. The bottle properties against frequency are theoretically and experimentally analyzed. It is shown that the bottle position depends almost linearly on the operating frequency, which provides a basis for the precise manipulation of bubbles and particles. In addition, the relationship between the acoustic radiation force and the drag force under different incident acoustic pressures is considered, establishing a limit on the moving velocity of the trapped particles. The ultrasonic field observation is further demonstrated by Schlieren imaging system. The proposed method has potential biomedical applications, such as more flexible cell manipulation and targeted drug delivery in vivo, as well as potential applications in the study of chemical reactions between micro objects.  相似文献   

8.
We study the susceptible infected-susceptible (SIS) epidemic model on bipartite graph. According to the difference of sex conception in western and oriental nations, we construct the Barabasi Albert Barabasi Albert (BA-BA) model and Barabasi-Albert Homogeneity (BA-HO) model for sexually transmitted diseases (STDs). Applying the rate equation approach, the positive equilibria of both models are given analytically. We find that the ratio between infected females and infected males is distinctly different in both models and the infected density in the BA-HO model is much less than that in the BA-BA model. These results explain that the countries with small ratio have less infected density than those with large ratio. Our numerical simulations verify these theoretical results.  相似文献   

9.
Electronic excitations induced by a charged particle moving above two-dimensional electron gases are studied by means of the linearized quantum hydrodynamic (QHD) theory. In this calculation, we show that the influence of the quantum effects on the interaction process should be taken into account. The induced potential and the perturbed density of the electron gases as well as the stopping power of the particles are derived as functions of the projectile velocity, the particle position and the density function when including the quantum statistical and quantum diffraction effects. The dependence relations of the induced potential and the particle speed around the peak position at which the stopping power takes the maximum value are also discussed in this work.  相似文献   

10.
We investigate the boundary-layer flow on a moving permeable plate parallel to a moving stream. The governing equations are solved numerically by a finite-difference method. Dual solutions are found to exist when the plate and the free stream move in the opposite directions.  相似文献   

11.
A numerical model for a loose packing process of spherical particles is presented. The simulation model starts with randomly choosing a sphere according to a pregenerated continuous particle-size distribution, and then dropping the sphere into a dimension-specified box, and obtaining its final position by using dropping and rolling rules which are derived from a similar physical process of spheres dropping in the gravitational field to minimize its gravity potential. Effects of three different particle-size distributions on the packing structure were investigated. Analysis on the physical background of the powder-based manufacturing process is additionally applied to produce optimal packing parameters of bimodal and Gaussian distributions to improve the quality of the fabricated parts. The results showed that higher packing density can be obtained using bimodal size distribution with a particle-size ratio from 1.5 to 2.0 and the mixture composition around n 2:n 1=6:4. For particle size with a Gaussian distribution, the particle radii should be limited in a narrow range around 0.67 to 1.5.  相似文献   

12.
A quantum evolutionary computation (QEC) algorithm with particle swarm optimization (PSO) and two-crossovers is proposed to overcome identified limitations. PSO is adopted to update the Q-bit automatically, and two-crossovers are applied to improve the convergence quality in the basic QEC model. This hybrid strategy can effectively employ both the ability to jump out of the local minima and the capacity of searching the global optimum. The performance of the proposed approach is compared with basic QEC on the standard unconstrained scalable benchmark problem that numerous hard combinatorial optimization problems can be formulated. The experimental results show that the proposed method outperforms the basic QEC quite significantly.  相似文献   

13.
This article introduces a theoretical analysis of submerged nanoparticle manipulation in liquid medium using the atomic force microscopy, and gives a review of the major differences between dry and submerged manipulation processes. In this regard, the manipulation is modeled by adding the influences of the hydrodynamic forces surface forces to the manipulation model in dry air. Then, the pushing of a gold nanoparticle of 50-nm radius on a silicon substrate at a velocity of 100 nm/s is simulated, and the dynamic behaviors of the tip and nanoparticle are investigated. The results show that, in water (as compared to air), the required manipulation force and time for nanoparticle sliding and rolling increase by 3.5 and 6.5%, for sliding and 2 and 4.3% for rolling, respectively. Also, in liquids with different viscosities, the critical values related to sliding and rolling have a maximum variation of 17 and 32% for the manipulation time, and 6 and 22% for the manipulation force, respectively, as compared to the critical values related to particle manipulation in air. Moreover, for various submerged lengths of the cantilever in water, the critical values related to sliding and rolling show a maximum time variation of 9 and 10.5%, and 7 and 7.2% (for the manipulation force), respectively. Qualitative comparisons between the obtained results and those of the existing experimental investigations show the advantages of the liquid medium for the manipulation purposes.  相似文献   

14.
A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahfung process and then collide with the neutrals in the jet, causing the latter to be ionized.  相似文献   

15.
Manipulating the directional movement of liquid droplets is of significance for design and fabrication of some microfluidic devices, An energy-based method is adopted to analyse the directional movement of a droplet deposited in a conical tube or on a conical fibre. We perform an experiment to investigate the directional motion of a droplet in an open conical tube. Our theoretical analysis and experimental observations both demonstrate that surface tension can drive the droplet to move in the conical tube. The critical condition of the liquid moving in the conical tube is presented. We also analyse a droplet on a conical hydrophilic fibre, which can move from the thinner to the thicker end.  相似文献   

16.
We study the problem of localizing and tracking in a confocal laser scanning microscope a single fluorescent particle diffusing in three dimensions. The position of the particle is estimated from a collection of intensity measurements using a novel analytical algorithm. This estimator is then combined with a tracking algorithm based on a linear quadratic Gaussian controller to steer the detection volume of the microscope and follow the molecule. The feasibility of the approach is demonstrated through numerical simulations. These results indicate that, in such a system, tracking in three dimensions of a particle moving with a diffusion constant larger than 1 μm2/s is possible without the need for additional sensors or lasers.  相似文献   

17.
Biospeckle or dynamic speckle can be used as a method for analysing activity, biologic or not, from materials illuminated with laser beam. The Spatial Temporal Speckle (STS) contains data of time information of dynamic speckle and it is used as input for many techniques allowing the analysis of the activity which is being monitored. One question that rises from the manipulation of the STS is related with the information inside it, in particular, whether it is possible to access different frequency behaviors in the time series presented in the STS pattern. This study presents the Inertia Moment, the Wavelets based Entropy and the Cross-Spectrum analysis as approaches that can be used for evaluating the STS spectral content. In a simulation, STS lines have been created based on many frequencies of the fundamental harmonic. This was done for verifying as each method acts when analysing different frequencies, varying harmonics offset and amplitude. These techniques were applied to real database, to validate their action mechanism in real samples. The results present that all techniques were able to verify the spectral content of different harmonics. Inertia Moment was more efficient on analysing high frequencies, because it is a second order moment, being able to obtain more information from high variations on activity. Entropy and Cross-Spectrum, in turn, were better on differing lower frequencies. This was attributed to the convolution proccess, which is present in both methods, filtering high frequencies. Although, any of them returned informations on both high and low frequencies at the same time, they can be used simultaneously, since Entropy and Cross-Spectrum were complementary to Inertia Moment.  相似文献   

18.
The formation of vortices at a moving front of lightweight granular particles is investigated experimentally. The particles used in this study are made of polystyrene foam with three different diameters of nearly uniform size. Pairs of vortices are found to emerge at the moving front at regular intervals, thereby forming a wavy pattern. Once the vortices are produced, the flow velocity tends to increase. A simple analysis suggests the existence of a velocity boundary layer at the moving front, whose thickness increases with increasing particle diameter. The frontal radius of each vortex pair is about the size of this boundary layer; when the radius exceeds this size, the front tends to bifurcate into a train of vortices with the size of the boundary layer. The formation of twin vortices leads to a reduction in the air drag force exerted on the system, and thereby the system attains a higher flow velocity, i.e., a higher conversion rate of gravitational potential energy to the kinetic energy of the particle motion. The higher conversion rate of potential energy thus feeds back to the development of the vortex motion, resulting in the twin vortex formation.  相似文献   

19.
基于多松弛格子Boltzmann模型,对竖直细长微通道内颗粒自由沉降过程进行模拟,分析气体稀薄效应、初始位置以及颗粒间相互作用对微颗粒沉降特性的影响.研究表明:随Knudsen数增大,微通道内气体稀薄效应增强,颗粒表面气体滑移速度增大,气相流体有效粘度减小,颗粒相同运动状态下受到气体阻力相应减小,颗粒沉降平衡速度明显增大;不同初始位置颗粒沉降过程存在明显差异,初始位置偏离中心线颗粒将发生水平方向位移且呈振荡趋势,最终稳定于中心线平衡位置;在微尺度双颗粒沉降DKT现象过程中,气体稀薄效应影响颗粒运动特性,后颗粒跟随过程明显增长.  相似文献   

20.
Acoustic radiation forces offer a means of manipulating particles within a fluid. Much interest in recent years has focussed on the use of radiation forces in microfluidic (or “lab on a chip”) devices. Such devices are well matched to the use of ultrasonic standing waves in which the resonant dimensions of the chamber are smaller than the ultrasonic wavelength in use. However, such devices have typically been limited to moving particles to one or two predetermined planes, whose positions are determined by acoustic pressure nodes/anti-nodes set up in the ultrasonic standing wave. In most cases devices have been designed to move particles to either the centre or (more recently) the side of a flow channel using ultrasonic frequencies that produce a half or quarter wavelength over the channel, respectively.It is demonstrated here that by rapidly switching back and forth between half and quarter wavelength frequencies - mode-switching - a new agglomeration position is established that permits beads to be brought to any arbitrary point between the half and quarter-wave nodes. This new agglomeration position is effectively a position of stable equilibrium. This has many potential applications, particularly in cell sorting and manipulation. It should also enable precise control of agglomeration position to be maintained regardless of manufacturing tolerances, temperature variations, fluid medium characteristics and particle concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号