首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se.  相似文献   

2.
The paper describes the analysis of a set of metals in macrozoobenthos samples from a river in Western Austria by using total reflection X-ray fluorescence analysis (TXRF). Metal concentrations in aquatic insect larvae from an industrially contaminated site are significantly higher than in larvae from a reference site. Furthermore, species-specific differences in metal accumulation were found. TXRF allows multi-element analysis of very low metal concentrations in very small sample masses (e.g. single aquatic insect larvae with a dry weight of only a few milligrams). Due to its multi-element capability and high sensitivity total reflection X-ray fluorescence analysis is a valuable tool for biomonitoring studies of metal contamination in aquatic ecosystems.  相似文献   

3.
The measurement of technetium in inorganic solutions is reported for the first time using total reflection X-ray fluorescence (TXRF). Sodium pertechnetate solutions eluted from decayed 99Mo generators were efficiently excited with a silver-anode X-ray tube in a standard configuration. The technique has been developed to aid establishing the extent of stoichiometric relations between Tc and a ligand in organo-metallic compounds synthesized with diagnostic purposes for nuclear medicine. The precision attained was 5% and the detection limit achieved for Tc in inorganic solutions by TXRF at 1000 s was 0.039 μg/ml.  相似文献   

4.
X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise (Anisum vulgare), licorice root (Glycyrrhiza glabra), and white wormwood (Artemisia herba-alba).  相似文献   

5.
There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon).  相似文献   

6.
Water soluble polyelectrolyte samples containing mono-, bi- and trivalent metal ions were investigated without any pretreatment. Acid digestion of linear polymers may lead to a product insoluble in water so the digestion has to be avoided. The determination of analytical characteristics and limitations of the total reflection X-ray fluorescence (TXRF) analysis for poly(vinylalcohol-vinylsulfate) copolymers containing the following cations: Cs+; Ba2+; Cu2+ and La3+ are presented in this communication. On the basis of our results efficiency of ion-exchange during preparation of polyelectrolytes and stoichiometry of the end-product were determined. TXRF results were compared with data gained by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements except in the case of Cs+, which has poor sensitivity in ICP-AES. Good agreement was found between the results of the two techniques and calculations from titrimetric data. Concentration of Li+ and Mg2+ in polymer samples was measured only by ICP-AES.  相似文献   

7.
This paper proposes an optimized method to mark polysaccharide macromolecules with heavy atoms in order to make possible their detection by total reflection X-ray fluorescence. A chemical reaction was employed to produce the substitution of OH groups of the polymer macromolecules by iodine atoms. Temperature, time, concentration of reactants and pH of the labeling chemical reaction were the variables and the relative sensitivities of the introduced atoms in the TXRF determinations were the optimization parameters for the TXRF determinations. Control of the physical properties of the polymer and the labeled product were made in order to prevent chemical alterations. The quantification of the labeled macromolecules was made by a previous careful calibration.  相似文献   

8.
A study regarding uranium determination in seawater by total reflection X-ray fluorescence (TXRF) spectrometry is reported. Uranium, present in seawater in concentration of about 3.3 ng/mL, was selectively extracted in diethyl ether and determined by TXRF after its preconcentration by evaporation and subsequent dissolution in a small volume of 1.5% suprapure HNO3. Yttrium was used as an internal standard. Before using diethyl ether for selective extraction of uranium from seawater, its extraction behavior for different elements was studied using a multielement standard solution having elemental concentrations in 5 ng/mL levels. It was observed that the extraction efficiency of diethyl ether for uranium was about 100% whereas for other elements it was negligible. The detection limit of TXRF method for uranium in seawater samples after pre-concentration step approaches to 67 pg/mL. The concentrations of uranium in seawater samples determined by TXRF are in good agreement with the values reported in the literature. The method shows a precision within 5% (1σ). The study reveals that TXRF can be used as a fast analytical technique for the determination of uranium in seawater.  相似文献   

9.
The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil.In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other.Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix.  相似文献   

10.
The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL1. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g– 1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al2O3, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a concentration range from 2.5 to 1470 μg g– 1 were found to be 0.995, 0.991 and 0.997, respectively.  相似文献   

11.
Nuclear energy is one of the available energy options for long term energy security of world. In order to produce electricity using this mode of energy generation in an efficient and safe manner, it is necessary that the materials used for such energy generation comply with the specifications assigned. The major and trace composition of these materials is an important specification for their quality control. Different analytical techniques are used for such quality control. Total reflection X-ray fluorescence (TXRF) is a comparatively new technique having several features well suited for trace and major element determinations in nuclear materials. However, this technique has not been used so far extensively for characterization of nuclear materials. The present paper gives a brief introduction of TXRF, its suitability for nuclear material characterization and some details of the TXRF studies made in our laboratory for the characterization of nuclear materials.  相似文献   

12.
Besides photochemical smog, particulate air pollution is a constantly growing problem in urban areas. The particulate matter present in pollution events contains often toxic or health impacting elements and is responsible for low visibility, might be triggering respiratory diseases like asthma, and can play an important role in formation or duration of smog events. To characterize particulate pollution in two different cities, samples were taken during intensive field campaigns in Chicago, IL, in 2002 and Phoenix, AZ, in 2001. Both cities experience regularly photochemical smog events as well as particulate pollution, but show very different meteorological and topographical conditions. Therefore it is expected that the particulate composition varies significantly, providing information about different pollution forms. Sampling took place in both cases at elevated locations and had a temporal resolution of 1.5 h and 1 h, respectively. The samples were analyzed by total reflection X-ray fluorescence after digestion of the filter matrix. As expected the elemental composition of particulate matter varied between both cities substantially with Phoenix showing a higher abundance of crustal elements, and Chicago enrichment in anthropogenically produced ones. In both cities diurnal patterns were found, exerting maxima in the morning and minima in the early afternoon. The diurnal pattern was much more regularly and also more strongly pronounced in Phoenix. Phoenix's valley location permits for a more stable nocturnal boundary layer to build up during the night thus trapping particulates efficiently during this time, until mixing occurs in the early morning hours and the residual layer lifts. In Chicago, the diurnal variation was less extreme, but another pattern determines the situation with the lake breeze. The lake breeze corresponds to a shift in wind direction towards the east, i.e. from Lake Michigan during the late morning. It was found that certain elemental species were enriched during a lake breeze event whereas this was not the case during other days. In conclusion, the low sample mass needed for TXRF analysis and the corresponding short sampling times, permitted the observation and characterization of local meteorological patterns in Phoenix and in Chicago.  相似文献   

13.
The method of using the Compton peak as internal standard in total reflection X-ray fluorescence (TXRF) determination is established for trace element determination of Fe, Cu, Zn, Se and Pt in human serum and of Cu and Zn in homogenized brain samples. A new method of spectrometer sensitivity calibration using spiked matrices with known amounts of trace elements is tested against established methods of matrix matching as well as internal element addition. The analytical results with the proposed procedure are compared to a certified international standard and to values with Atomic Absorption Spectrometry (AAS) obtaining analytical results of comparable accuracy and precision. The method is adequate for routine clinical analysis as it has the advantages of requiring very small amounts of material and simple preparations, which avoids the chemical digestion stage.  相似文献   

14.
Uranium has been classified as a toxic chemical. It affects the kidneys, with nephritis being the primarily chemically-induced effect in animals and humans. Intermediate-term studies on animals indicate that increased uranium doses are positively correlated with various biochemical effects and histopathological changes. Since the kidneys efficiently excrete in urine the major portion of solubilized uranium circulating in blood, an increased urinary uranium excretion can provide a sensitive quantitative measure of exposure, especially in the case of acute exposure. In the present work a method was developed for the quantitative determination of uranium in human urine. It combines the chemical treatment of urine, which results in a significant pre-concentration of uranium, with its subsequent detection by means of total reflection X-ray fluorescence (TXRF). The method has been proven to be relatively fast, offering detection limits that allow for monitoring uranium intake above normal levels.  相似文献   

15.
Recently there is a growing interest in low Z elements such as carbon, oxygen up to sulphur and phosphorus in biological specimen. Total reflection X-ray fluorescence (TXRF) spectrometry is a suitable technique demanding only very small amounts of sample. On the other side, the detection of low Z elements is a critical point of this analytical technique. Besides other effects, self absorption may occur in the samples, because of the low energy of the fluorescence radiation. The calibration curves might be not linear any longer. To investigate this issue water samples and samples from human cerebrospinal fluid were used to examine absorption effects. The linearity of calibration curves in dependence of sample mass was investigated to verify the validity of the thin film approximation. The special requirements to the experimental setup for low Z energy dispersive fluorescence analysis were met by using the Atominstitute's TXRF vacuum chamber. This spectrometer is equipped with a Cr-anode X-ray tube, a multilayer monochromator and a SiLi detector with 30 mm2 active area and with an ultrathin entrance window. Other object on this study are biofilms, living on all subaqueous surfaces, consisting of bacteria, algae and fungi embedded in their extracellular polymeric substances (EPS). Many trace elements from the water are bound in the biofilm. Thus, the biofilm is a useful indicator for polluting elements. For biomonitoring purposes not only the polluting elements but also the formation and growth rate of the biofilm are important. Biofilms were directly grown on TXRF reflectors. Their major elements and C-masses correlated to the cultivation time were investigated. These measured masses were related to the area seen by the detector, which was experimentally determined. Homogeneity of the biofilms was checked by measuring various sample positions on the reflectors.  相似文献   

16.
Multielemental determinations in samples of various types of bee honey, pollen and bee tissue have been carried out using total reflection X-ray fluorescence spectrometry (TXRF) and radioisotope excited X-ray fluorescence spectrometry (XRF). The objective was to establish whether the elemental content of bee honey, in particular, correlates with any useful information about the environment, variety of honey, etc. An attempt has also been made to determine the X-ray techniques' ability to compete with atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), with regard to elemental sensitivity, accuracy, sample preparation procedures, and in particular, economic performance, which is very important in selecting an appropriate technique for the analysis of large numbers of samples. The results confirm the advantages of the TXRF method for trace element analysis, but only when utilising monochromatic excitation and selecting a proper sample preparation procedure. The radioisotope XRF technique, which does not require any sample preparation, is still very competitive in analysis of elements with concentrations above a few ten ppm. Preliminary results also confirm some correlations between the elemental content of honey and the status of the environment, and encourage further work in this direction  相似文献   

17.
In this work total reflection X-ray fluorescence spectrometry has been employed to determine trace element concentrations in different human breast tissues (normal, normal adjacent, benign and malignant). A multivariate discriminant analysis of observed levels was performed in order to build a predictive model and perform tissue-type classifications. A total of 83 breast tissue samples were studied. Results showed the presence of Ca, Ti, Fe, Cu and Zn in all analyzed samples. All trace elements, except Ti, were found in higher concentrations in both malignant and benign tissues, when compared to normal tissues and normal adjacent tissues. In addition, the concentration of Fe was higher in malignant tissues than in benign neoplastic tissues. An opposite behavior was observed for Ca, Cu and Zn. Results have shown that discriminant analysis was able to successfully identify differences between trace element distributions from normal and malignant tissues with an overall accuracy of 80% and 65% for independent and paired breast samples respectively, and of 87% for benign and malignant tissues.  相似文献   

18.
The total reflection X-ray fluorescence using synchrotron radiation (SRTXRF) has become a competitive technique for the determination of trace elements in samples that the concentrations are lower than 100 ng ml−1. In this work, thirty-seven mineral waters commonly available in supermarkets of Rio de Janeiro, Brazil, were analyzed by SRTXRF. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo, using a polychromatic beam with maximum energy of 20 keV for the excitation. Standard solutions with gallium as internal standard were prepared for calibration of the system. Mineral water samples of 10 μl were added to Perspex sample carrier, dried under infrared lamp and analyzed for 200 s measuring time. It was possible to determine the concentrations of the following elements: Si, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, Ge, Rb, Sr, Ba and Pb. The elemental concentration values were compared with the limits established by the Brazilian legislation.  相似文献   

19.
Summary A combined procedure enabling simultaneous multielement analysis of trace impurities in high-purity iron is presented. After removal of the iron matrix by solvent extraction with methyl isobutyl ketone, the trace elements Ti, V, Cr, Mn, Ni, Cu, Pb and Bi are determined by means of total reflection X-ray fluorescence analysis. Detection limits are found in the range of 100 ng/g. The reliability of the method is verified by the analysis of commercial high-purity iron and by the comparison of analytical data obtained by ICP-AES.  相似文献   

20.
Total reflection X-ray fluorescence (TXRF) analysis after the separation of matrix element was studied for the determination of trace impurity elements (Ca, Sc, V, Cr, Mn, Fe, Co, Ni and Zn) in high purity copper. Matrix copper was removed by electrolysis (0.2 A, 8 h) of a nitric acid solution. A 10 μL aliquot of the remaining solution of the electrolysis was dropped on a silicon-wafer sample-carrier and dried in a vacuum. This was repeated five times and the precipitate of five 10 μL-aliquots was analyzed by TXRF using a W-Lβ beam with an incident angle of 0.05?°. TXRF analytical values were obtained by using relative sensitivity factors of the analytes to the internal standard element (Pd). Detection limits of the analytes ranges from 0.077 ng for Zn to 0.785 ng for Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号