首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuous time random walk (CTRW) imposes a random waiting time between random particle jumps. CTRW limit densities solve a fractional Fokker-Planck equation, but since the CTRW limit is not Markovian, this is not sufficient to characterize the process. This paper applies continuum renewal theory to restore the Markov property on an expanded state space, and compute the joint CTRW limit density at multiple times.  相似文献   

2.
T.S. Biró 《Physica A》2008,387(7):1603-1612
In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters.  相似文献   

3.
Coupled continuous time random walks (CTRWs) model normal and anomalous diffusion of random walkers by taking the sum of random jump lengths dependent on the random waiting times immediately preceding each jump. They are used to simulate diffusion-like processes in econophysics such as stock market fluctuations, where jumps represent financial market microstructure like log returns. In this and many other applications, the magnitude of the largest observations (e.g. a stock market crash) is of considerable importance in quantifying risk. We use a stochastic process called a coupled continuous time random maxima (CTRM) to determine the density governing the maximum jump length of a particle undergoing a CTRW. CTRM are similar to continuous time random walks but track maxima instead of sums. The many ways in which observations can depend on waiting times can produce an equally large number of CTRM governing density shapes. We compare densities governing coupled CTRM with their uncoupled counterparts for three simple observation/wait dependence structures.  相似文献   

4.
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism.  相似文献   

5.
Anomalous transport is usually described either by models of continuous time random walks (CTRWs) or, otherwise, by fractional Fokker-Planck equations (FFPEs). The asymptotic relation between properly scaled CTRW and fractional diffusion process has been worked out via various approaches widely discussed in literature. Here, we focus on a correspondence between CTRWs and time and space fractional diffusion equation stemming from two different methods aimed to accurately approximate anomalous diffusion processes. One of them is the Monte Carlo simulation of uncoupled CTRW with a Le?vy α-stable distribution of jumps in space and a one-parameter Mittag-Leffler distribution of waiting times. The other is based on a discretized form of a subordinated Langevin equation in which the physical time defined via the number of subsequent steps of motion is itself a random variable. Both approaches are tested for their numerical performance and verified with known analytical solutions for the Green function of a space-time fractional diffusion equation. The comparison demonstrates a trade off between precision of constructed solutions and computational costs. The method based on the subordinated Langevin equation leads to a higher accuracy of results, while the CTRW framework with a Mittag-Leffler distribution of waiting times provides efficiently an approximate fundamental solution to the FFPE and converges to the probability density function of the subordinated process in a long-time limit.  相似文献   

6.
Temperature is one of the main parameters describing thermal comfort and indoor air quality. In this paper we propose an approach, based on a modification of the continuous time random walk, to model the indoor air temperature. We perform a statistical analysis of the recorded time series, that allows us to point out the main statistical properties of the recorded variable. The obtained conclusions about the nature of the process lead to a continuous time random walk, that in contrast to the classical approach, models time dependence of the jumps distribution. Moreover, we show that the waiting times can be modeled by a tempered stable distribution, which yields a subdiffusive behavior in short times and diffusive behavior in longer times. Finally, by conducting a simulation study we illustrate possible applications of the presented approach in the thermal comfort monitoring and forecasting.  相似文献   

7.
The one-dimensional walk of a particle executing instantaneous jumps between the randomly distributed “atoms” at which it resides for a random time is considered. The random distances between the neighboring atoms and the time intervals between jumps are mutually independent. The asymptotic (t → ∞) behavior of this process is studied in connection with the problem of interpretation of the generalized fractional diffusion equation (FDE). It is shown that the interpretation of the FDE as the equation describing the walk (diffusion) in a fractal medium is incorrect in the model problem considered. The reason is that the FDE implies that the consecutive jumps (fractal walk) are independent, whereas they are correlated in the case under consideration: a particle leaving an atom in the direction opposite to the preceding direction traverses the same path until arriving at the atom.  相似文献   

8.
We study central limit theorems for a totally asymmetric, one-dimensional interacting random system. The models we work with are the Aldous–Diaconis–Hammersley process and the related stick model. The A-D-H process represents a particle configuration on the line, or a 1-dimensional interface on the plane which moves in one fixed direction through random local jumps. The stick model is the process of local slopes of the A-D-H process, and has a conserved quantity. The results describe the fluctuations of these systems around the deterministic evolution to which the random system converges under hydrodynamic scaling. We look at diffusive fluctuations, by which we mean fluctuations on the scale of the classical central limit theorem. In the scaling limit these fluctuations obey deterministic equations with random initial conditions given by the initial fluctuations. Of particular interest is the effect of macroscopic shocks, which play a dominant role because dynamical noise is suppressed on the scale we are working. Received: 4 October 2001 / Accepted: 12 March 2002  相似文献   

9.
Advection and dispersion in time and space   总被引:2,自引:0,他引:2  
B. Baeumer  D.A. Benson  M.M. Meerschaert   《Physica A》2005,350(2-4):245-262
Previous work showed how moving particles that rest along their trajectory lead to time-nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions to the equation are obtained by subordination. The form of the time derivative is related to the probability distribution of particle waiting times and the subordinator is given as the first passage time density of the waiting time process which is computed explicitly.  相似文献   

10.
In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.Research partially supported by DARPA under the FUNBIO program and the Francis J. Carey Term Chair.  相似文献   

11.
A quantum particle observed on a sufficiently large space-time scale can be described by means of classical particle trajectories. The joint distribution for large-scale multiple-time position and momentum measurements on a nonrelativistic quantum particle moving freely inR v is given by straight-line trajectories with probabilities determined by the initial momentum-space wavefunction. For large-scale toroidal and rectangular regions the trajectories are geodesics. In a uniform gravitational field the trajectories are parabolas. A quantum counting process on free particles is also considered and shown to converge in the large-space-time limit to a classical counting process for particles with straight-line trajectories. If the quantum particle interacts weakly with its environment, the classical particle trajectories may undergo random jumps. In the random potential model considered here, the quantum particle evolves according to a reversible unitary one-parameter group describing elastic scattering off static randomly distributed impurities (a quantum Lorentz gas). In the large-space-time weak-coupling limit a classical stochastic process is obtained with probability one and describes a classical particle moving with constant speed in straight lines between random jumps in direction. The process depends only on the ensemble value of the covariance of the random field and not on the sample field. The probability density in phase space associated with the classical stochastic process satisfies the linear Boltzmann equation for the classical Lorentz gas, which, in the limith0, goes over to the linear Landau equation. Our study of the quantum Lorentz gas is based on a perturbative expansion and, as in other studies of this system, the series can be controlled only for small values of the rescaled time and for Gaussian random fields. The discussion of classical particle trajectories for nonrelativistic particles on a macroscopic spacetime scale applies also to relativistic particles. The problem of the spatial localization of a relativistic particle is avoided by observing the particle on a sufficiently large space-time scale.  相似文献   

12.
13.
A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness.  相似文献   

14.
《Physica A》2005,355(1):34-45
We present a double-auction artificial financial market populated by heterogeneous agents who trade one risky asset in exchange for cash. Agents issue random orders subject to budget constraints. The limit prices of orders may depend on past market volatility. Limit orders are stored in the book whereas market orders give immediate birth to transactions. We show that fat tails and volatility clustering are recovered by means of very simple assumptions. We also investigate two important stylized facts of the limit order book, i.e., the distribution of waiting times between two consecutive transactions and the instantaneous price impact function. We show both theoretically and through simulations that if the order waiting times are exponentially distributed, even trading waiting times are also exponentially distributed.  相似文献   

15.
We investigate aging in glassy systems based on a simple model, where a point in configuration space performs thermally activated jumps between the minima of a random energy landscape. The model allows us to show explicitly a subaging behavior and multiple scaling regimes for the correlation function. Both the exponents characterizing the scaling of the different relaxation times with the waiting time and those characterizing the asymptotic decay of the scaling functions are obtained analytically by invoking a "partial equilibrium" concept.  相似文献   

16.
Burhan Bakar 《Physica A》2008,387(21):5110-5116
The conventional Hamming distance measurement captures only short-time dynamics of the displacement between uncorrelated random configurations. The minimum difference technique introduced by Tirnakli and Lyra [U. Tirnakli, M.L. Lyra. Int. J. Mod. Phys. C 14 (2003) 805] is used to study short-time and long-time dynamics of the two distinct random configurations of isotropic and anisotropic Bak-Sneppen models on a square lattice. Similar to a 1-dimensional case, the time evolution of the displacement is intermittent. The scaling behavior of the jump activity rate and waiting time distribution reveal the absence of typical spatial-temporal scales in the mechanism of displacement jumps used to quantify convergence dynamics.  相似文献   

17.
The path of a tracer particle through a porous medium is typically modeled by a stochastic differential equation (SDE) driven by Brownian noise. This model may not be adequate for highly heterogeneous media. This paper extends the model to a general SDE driven by a Lévy noise. Particle paths follow a Markov process with long jumps. Their transition probability density solves a forward equation derived here via pseudo-differential operator theory and Fourier analysis. In particular, the SDE with stable driving noise has a space-fractional advection-dispersion equation (fADE) with variable coefficients as the forward equation. This result provides a stochastic solution to anomalous diffusion models, and a solid mathematical foundation for particle tracking codes already in use for fractional advection equations.  相似文献   

18.
We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida (Phys. Rev. E 70:016106, 2004). The particles can be interpreted as last passage times in directed percolation on {1,…,N} of mean-field type. The particles remain grouped and move like a traveling front, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. As shown in Brunet and Derrida (Phys. Rev. E 70:016106, 2004), the model with Gumbel distributed jumps has a simple structure. We establish that the scaling limit is a Lévy process in this case. We study other jump distributions. We prove a result showing that the limit for large N is stable under small perturbations of the Gumbel. In the opposite case of bounded jumps, a completely different behavior is found, where finite-size corrections are extremely small.  相似文献   

19.
We investigate the non-equilibrium dynamics of spherical spin models with two-spin interactions. For the exactly solvable models of the d-dimensional spherical ferromagnet and the spherical Sherrington-Kirkpatrick (SK) model the asymptotic dynamics has for large times and large waiting times the same formal structure. In the limit of large waiting times we find in both models an intermediate time scale, scaling as a power of the waiting time with an exponent smaller than one, and thus separating the time-translation-invariant short-time dynamics from the aging regime. It is this time scale on which the fluctuation-dissipation theorem is violated. Aging in these models is similar to that observed in spin glasses at the level of correlation functions, but different at the level of response functions, and thus different at the level of experimentally accessible quantities like thermoremanent magnetization. Received 22 April 1999  相似文献   

20.
We consider a new type of random walks of particles with a jump-like change in acceleration. The corresponding kinetic equations for the probability density of the particle coordinates are derived. The probability density is found to obey the fractional diffusion equation. In this case, both sub-and superdiffusion appear for a sufficiently rapidly decaying distribution of the random waiting times, which was not observed earlier and is a fundamentally new phenomenon in the theory of anomalous diffusion. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 48, No. 12, pp. 1077–1082, December 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号