首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Chemical speciation [Sb(V) and Sb(III)] affects the mobility, bioavailability and toxicity of antimony. In oxygenated environments Sb(V) dominates whereas thermodynamically unstable Sb(III) may occur. In this study, a simple method for the determination of Sb(III) in non acidic, oxygenated water contaminated with antimony is proposed. The determination of Sb(III) was performed by anodic stripping voltammetry (ASV, 1–20 μg L−1 working range), the total antimony, Sb(tot), was determined either by inductively coupled plasma mass spectrometry (ICP-MS, 1–100 μg L−1 working range) or inductively coupled plasma optical emission spectrometry (ICP-OES, 100–10,000 μg L−1 working range) depending on concentration. Water samples were filtered on site through 0.45 μm pore size filters. The aliquot for determination of Sb(tot) was acidified with 1% (v/v) HNO3. Different preservatives, namely HCl, L(+) ascorbic acid or L(+) tartaric acid plus HNO3, were used to assess the stability of Sb(III) in synthetic solutions.The method was tested on groundwater and surface water draining the abandoned mine of Su Suergiu (Sardinia, Italy), an area heavily contaminated with Sb. The waters interacting with Sb-rich mining residues were non acidic, oxygenated, and showed extreme concentrations of Sb(tot) (up to 13,000 μg L−1), with Sb(III) <10% of total antimony. The stabilization with L(+) tartaric acid plus HNO3 appears useful for the determination of Sb(III) in oxygenated, Sb-rich waters. Due to the instability of Sb(III), analyses should be carried out within 7 days upon the water collection. The main advantage of the proposed method is that it does not require time-consuming preparation steps prior to analysis of Sb(III).  相似文献   

2.
l-proline was immobilized on controlled pore glass to study the ability of this material for the separation and preconcentration of Sb(III) and Sb(V). The substrate was packed in a minicolumn and incorporated in a flow injection system. The effluents of the on-line solid phase extraction (before and after elution) were directly coupled to the hydride generation inductively coupled plasma optical emission spectrometry system. The effect of pH, sample (and eluent) volume, flow rates of sample loading and elution on separation of Sb(III) e Sb(V) were evaluated. Our experiments demonstrated that Sb(V) was not retained and it was selectively determined during the loading step, while retained Sb(III) was determined after elution. The proposed system was also used for the selective preconcentration of Sb(III). In this case, a preconcentration factor of 11 and a limit of detection of 90 ng L−1 for Sb(III) were achieved when 8 mL of sample were loaded into the column. The speciation analysis of inorganic Sb in river water and effluent samples was performed using the proposed method. The values obtained for total Sb (obtained by sum of Sb(III) and Sb(V)) were in good agreement with expected values. Recoveries of Sb(III) and Sb(V) in the river water Standard Reference Material 1640 (from National Institute of Standard and Technology) and spiked river waters were between 83 and 111%.  相似文献   

3.
An automated solid phase extraction method by flow analysis on-line inductively coupled plasma mass spectrometry (FI-ICP-MS) for the determination of cobalt, chromium, nickel, cadmium, manganese, zinc, copper and lead in sea-water and other natural waters is described. The system is based on retention of the analytes onto a minicolumn packed with a chelating resin, 1,5-bis (2-pyridyl)-3-sulphophenyl methylene thiocarbonohydrazide immobilized on aminopropyl-controlled pore glass, placed in the injection valve of a simple flow manifold. The effects of chemical and flow variables were investigated and selected as a compromise between sensitivity and sampling frequency. So, the sample solutions (adjusted to pH 8.0 ± 0.5) were passed through the column. After washing the column with water, the adsorbed metals were subsequently eluted into the plasma with 4% m/m nitric acid. Detection limits of the trace metals (180 s sample loading time at a sample flow rate of 0.7 mL min? 1; sampling frequency 8.6 h? 1) were 0.002 μg L? 1 for Co, 0.057 μg L? 1 for Cr, 0.117 μg L? 1 for Ni, 0.004 μg L? 1 for Cd, 0.210 μg L? 1 for Mn, 0.260 μg L? 1 for Zn, 0.030 μg L? 1 for Cu and 0.020 μg L? 1 for Pb, with enrichment factors between 2.2 and 6.8. The accuracy of the proposed method was checked with certified reference materials (CRMs) of sea-water SLEW 3, LGC6016 and CASS-5, river water SLRS-5 and fortified lake water TMDA-54.4. The results from the determination of these metals were in agreement with the certified values and recovery values ranged between 92.2 and 110.6%. The method was applied to the determination of these metal ions in sea-water samples collected in the Málaga Bay in order to realize a pilot study necessary to generate preliminary information on which to base a more detailed pollution study by heavy metals of the Bay.  相似文献   

4.
The thermodynamic properties of liquid (Au–Sb–Sn) alloys were studied with an electromotive force (EMF) method using the eutectic mixture of KCl/LiCl with addition of SnCl2 as a liquid electrolyte. Activities of Sn in the liquid alloys were measured at three cross-sections with constant molar ratios of Au:Sb = 2:1, 1:1, and 1:2 with tin in the concentration range between 5 at.% and 90 at.% from the liquidus of the samples up to 1073 K. The integral Gibbs excess energies and the integral enthalpies at 873 K were calculated by Gibbs–Duhem integration. Additionally liquid Au–Sb alloys have been measured at 913 K with the EMF method as no reliable data for the Gibbs excess energies have been found in literature. The eutectic mixture of KCl/LiCl with addition of SbCl3 has been used as an electrolyte for the measurements. The Gibbs excess energies from the (Au + Sb) system were necessary for the integration of the thermodynamic properties of the ternary (Au + Sb + Sn) system.  相似文献   

5.
A flow injection-column adsorption preconcentration-microwave plasma atomic emission spectrophotometric (FI-column-MP-AES) method is developed for on-line determining trace levels of inorganic arsenic and antimony released from packaging glass containers. The developed methodology involves a micro-column packed with poly (aryl ether ketone) containing pendant carboxyl groups (PEK-L) for adsorption preconcentration procedure before the determination by MP-AES. The main parameters affecting the preconcentration/separation are investigated in details. Under the optimized conditions, the detection limit of the proposed technique is 0.27 μg L? 1 for As and 0.38 μg L? 1 for Sb. Precisions, evaluated as repeatability of results (relative standard deviation with n = 7), are 2.8 and 1.8% respectively for As and Sb. The proposed method has been applied to different reference materials and glass bottle packaging samples with satisfactory results.  相似文献   

6.
The electrochemistry of a single-component redox flow battery employing vanadium(III) acetylacetonate in acetonitrile and tetraethylammonium tetrafluoroborate has been investigated. The electrode kinetics of the anodic and cathodic reactions were studied using cyclic voltammetry. The V(II)/V(III) and V(III)/V(IV) couples were quasi-reversible and together yielded a cell potential of 2.2 V. The diffusion coefficient for vanadium acetylacetonate was estimated to be in the range of 1.8–2.9 × 10?6 cm2 s?1 at room temperature. The charge–discharge characteristics of this system were evaluated in an H-type glass cell, and coulombic efficiencies near 50% were achieved.  相似文献   

7.
《Comptes Rendus Chimie》2014,17(3):212-217
A study of the polyphenols content and antioxidant capacity of grapevine waste and hazelnut skins (roasted material) from post-harvest products that originate from Piedmont (Italy) has been carried out and the results herein presented. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were used to achieve process intensification in shorter extraction times, with lower environmental impact and higher selectivity compared to classic maceration. Besides classic solvents, the aqueous β-cyclodextrin solution (1.5%) showed to be an excellent extraction medium for grapevine waste. Total phenolic content (TP) from grapevine waste ranged from 18.23 ± 2.4 to 198 ± 3 mg gallic acid equivalents (GAE)/g dry weight, while total antioxidant capacity (TAC) expressed as EC50 ranged from 0.0902 ± 0.08 mg/mL to 0.0041 ± 0.02 mg/mL. For hazelnut skins, TP ranged from 61.68 ± 0.8 to 200.79 ± 3.0 mg GAE/g dry weight, while TAC ranged from 0.0021 ± 0.0004 to 0.0002 ± 0.0001 mg/mL extract. We have shown that, compared to maceration, the use of UAE and MAE methods can enhance polyphenols recovery and antioxidant capacity.  相似文献   

8.
This paper describes a novel strategy for actinide separation by extraction chromatography with Np(III) valence adjustment. Neptunium(IV) was reduced to Np(III) using Cr(II) and then selectively separated from uranium (IV) on a TEVA resin. After elution, Np(III) was retained on a DGA resin in order to remove any detrimental chromium impurities. Neptunium(III) formation was demonstrated by the complete and selective elution of Np from TEVA resin (99 ± 7%) in less than 12 mL of 9 M HCl from U(IV) (0.7 ± 0.7%). It was determined by UV–visible and kinetic studies that Cr(II) was the only species responsible for the elution of Np(IV) as Np(III) and that the Cr(II) solution could be prepared from 2 to 30 min before its use without the need of complex degassing systems to prevent the oxidation of Np(III) by oxygen. The methodology proposed here with TEVA/DGA resins provides removal of Cr(III) impurities produced at high decontamination factors (2.8 × 103 and 7.3 × 104 respectively).  相似文献   

9.
A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL–1 and for Sb(V) 8 ng.mL–1. Precisions observed are in the range ± 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples.  相似文献   

10.
A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3–0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources.  相似文献   

11.
Electrochemical and spectroscopic properties of Tb(III) in molten LiCl–KCl eutectic at high temperature were investigated by cyclic voltammetry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The diffusion coefficient of Tb(III) and the formal standard potential of Tb(III)/Tb0 were determined to be 2.06 ± 0.4 × 10? 5 cm2 s? 1 and ? 2.83 ± 0.03 V vs. Cl2/Cl? at 887 K, respectively. Additionally, visible fluorescence of Tb(III) due to the electronic transitions from 5D3 and 5D4 to 7FJ was observed and measured by TRLFS for the first time. These results provide the first fluorescence spectroscopic evidence for a direct in situ quantification of Tb(III) in the high temperature molten salt system.  相似文献   

12.
This paper represents the first work on the concentrations of heavy elements, physiochemical characteristics and activity levels of the naturally occurring radionuclides in the Saudi Arabian coastline of the Gulf of Aqaba. Concentrations of 19 heavy elements were measured, namely: Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, V and Zn. The radioactivity levels of 238U, 232Th and 40K were estimated to be: 17 ± 1.7, 22.5 ± 3.7 and 649.6 ± 64.2 Bq kg?1, respectively. The measurements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). In addition, physiochemical characteristics of 19 sediment samples (i.e., saturation percentage, pH, electrical conductivity, organic matter, cation exchange capacity and content of clay, silt and sand) have been determined. Indications for high correlation between most heavy elements are found. The correlation between heavy elements and the radionuclides 238U, 232Th and 40K was generally significant.  相似文献   

13.
A new Tb(III) dimer with an oxazoline-derivatized pyridine ligand, dimethyl-2,2′-(pyridine-2,6-diyl)bis(4,5-dihydrooxazole-4-carboxylate), has been isolated. This complex is highly luminescent and crystallizes in the triclinic P-1 space group with parameters a = 9.6167(2) Å, b = 11.6786(2) Å, c = 12.7548(3) Å, α = 70.026(1)°, β = 83.219(1)°, γ = 81.973(1)° and V = 1329.31(51)Å3. Solution speciation studies showed the formation of monomeric species with 1:1 and 2:1 ligand-to-metal ion stoichiometries with log β11 = 3.66 ± 0.41 and log β21 = 6.16 ± 0.37 for Eu(III) and log β11 = 3.56 ± 0.41 and log β21 = 6.21 ± 0.38 for Tb(III). The quantum yields of emission Φ and luminescence lifetimes τ of solutions with 2:1 stoichiometry were 26.4 ± 0.5% and 1.47 ± 0.06 ms for Eu(III) and 41.0 ± 1.3% and 1.87 ± 0.06 ms for Tb(III).  相似文献   

14.
Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, l-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5–10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l 1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5–10 μg l 1.Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l 1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l 1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l 1 for As(III) and 0.3 μg l 1 for the other three As species and precision is within 4–8% RSDs.Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l 1 (as As) and RSDs were 2–6%, 5–9%, 3–7% and 2–5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As(III), arsenite, has been confirmed as major arsenic species.  相似文献   

15.
A flow injection on-line displacement solid-phase extraction protocol was employed to minimize mass interferences with determination of palladium by inductively coupled plasma mass spectrometry (ICP-MS). The developed method involved in on-line complexing of Ag+ with pyrrolidine dithiocarbamate (PDC), presorption of the resultant Ag–PDC onto a microcolumn packed with the cigarette filter, displacement sorption of Pd2+ through loading the sample solution onto the microcolumn due to on-line displacement reaction between Pd2+ and the presorbed Ag–PDC, elution of the retained Pd2+ with 50 μL of ethanol for on-line ICP-MS detection. Interferences from co-existing heavy metal ions with lower stability of their PDC complexes relative to Ag–PDC were minimized/eliminated. No interferences from 5 mg L 1 Zn and 3 mg L 1 Pb for 104Pd, 0.4 mg L 1 Cu for 105Pd, 6 mg L 1 Zn and 2 mg L 1 Cd for 106Pd, 6 mg L 1 Zn and 3 mg L 1 Cd for 108Pd, and 2 mg L 1 Cd for 110Pd were observed for the determination of 100 ng L 1 Pd. The enhancement factors of 71–75, sample throughput of 23 samples h 1 and detection limits of 2.8–3.5 ng L 1 were achieved with the consumption of 3.0 mL of sample solution. The precision (RSD) for eleven replicate determinations of Pd at the 100 ng L 1 level was 1.8–2.7%. The developed method was applied to the determination of palladium in rock samples.  相似文献   

16.
In this article, a new treatment of gas diffusion layers (GDLs) was proposed by sucrose carbonization in order to obtain high hydrophobicity with low PTFE loading. Carbon was coated both on the cross position and stem of carbon fiber, resulting in the enhancement of carbon paper roughness, which improved the hydrophobicity of carbon paper with low PTFE loading. The water contact angle of carbonized carbon paper with 10 wt.% PTFE loading was measured as 137 ± 1° at 25 °C, which was higher than 125 ± 1° for non-carbonized carbon paper with the same PTFE loading. The performances of MEAs prepared by carbonized carbon paper were higher than those of MEAs prepared by non-carbonized carbon paper. The MEA prepared by carbonized carbon paper with 10 wt.% PTFE loading showed excellent performance compared to the other MEAs.  相似文献   

17.
A new sorbent based on cysteine modified silica gel (SiG-cys) was prepared and studied for preconcentration and separation of noble metals Au(III), Pd(II), Pt(II), Pt(IV). Its extraction efficiency was examined by batch and column solid phase extraction procedures. Laboratory experiments performed showed that sorbent is characterized with high selectivity, permiting quantitative sorption (93–97%) of noble metals Au, Pd and Pt from acidic media 0.1–2 mol L? 1 HCl and unsignificant sorption (less than 2%) for common base metals like Cu, Fe, Mn and Zn. The analytes retained on the sorbent are effectively eluted with 0.1 mol L? 1 thiourea in 0.1 mol L? 1 HCl and measured by ETAAS or ICP OES under optimal instrumental parameters. The sorbent showed high mechanical and chemical stability and extraction efficiency was not changed after 500 cycles of sorption/desorption. The sorbent was successfully applied in analyticals procedures for preconcentration and determination of Au, Pd and Pt in geological and soil samples. Detection limits (3σ criteria) achieved, depending on the instrumental methods used are: ETAAS (0.005 μg L? 1 for Au in river and sea water, 0.002 μg g? 1 for Au in copper ore and copper concentrate); ICP OES (0.03 μg L? 1 for Pd and 0.06 μg L? 1 for Pt in river and sea water, 0.006 μg g? 1 for Pd in copper ore and copper concentrate and 0.002 μg g? 1 for soluble Pt in soil). The accuracy of the procedures developed was confirmed by added/found method for sea and river water; by the analysis of national certified materials (copper ore and copper concentrate for Au and Pd) and by determination of the sum of soluble Pt(II) + Pt(IV) in spiked soil samples.  相似文献   

18.
Enzymatic transesterification of palm oil with methanol and ethanol was studied. Of the four lipases that were tested in the initial screening, lipase Candida Rugosa (CR) resulted in the highest yield of mono alkyl esters. Lipase CR was further investigated in immobilized form within an activated carbon as support. The activated carbon was prepared by activation physical. Using the immobilized lipase CR, the effects of water and alcohol concentration, enzyme loading and enzyme thermal stability in the transesterification reaction were investigated. The optimal conditions for processing 50 g of palm oil were: 37 °C, 1:14.5 oil/methanol molar ratio, 1.0 g water and 500 mg lipase for the reactions with methanol, 35 °C, 1:15.0 oil/ethanol molar ratio, 1.0 g water, 500 mg lipase for the reactions with ethanol, and 35 °C, 1:10.0 oil/n-butanol molar ratio, 1.0 g water, 500 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 70 and 85 mol% in 1 h of reaction were obtained for the immobilized enzyme reactions. The flow microcalorimetry is an important and novel techniques is used in evaluation of biodiesel production.  相似文献   

19.
《Solid State Sciences》2007,9(9):792-803
The crystal structure of Pb2SbS2I3 was solved at room temperature and 100 K. At 293 K it crystallizes in the orthorhombic system, space group Cmcm (No. 63), with unit cell parameters a = 4.3262(9), b = 14.181(3), c = 16.556(3) Å, V = 1017.7(4) Å3, Z = 4. The structure is disordered, and combines a split Pb site (s.o.f. = 0.50) with one mixed (Pb,Sb) site with Pb and Sb in two distinct sub-positions. At 100 K, it is monoclinic, space group P21/c, with unit cell parameters a = 7.3629(6), b = 16.466(3), c = 8.5939(7) Å, β = 107.14(2)°, V = 995.6(2) Å3, Z = 4. The structure is now fully ordered, without mixed sites. On the basis of bond valence calculations, new cation distributions are proposed for published structures of the Sn isotypes, Sn2SbS2I3 and Sn2SbSe2I3. A re-examination of the crystal structures of various (Pb/Sn/Sb) chalcogeno-iodides is presented according to modular analysis. All these structures can be described according to three types of 1D modules, (Pb/Sn)I4, (Sn)2I4 and (Pb/Sn/Sb)4(S/Se)2I4. Generally each type of 1D module gives one type of slab, and the final structure corresponds to a specific stacking of two or three among these slabs. A new structural model is proposed for “α-Sn2SI2”, which would have the non-stoichiometric composition (Sn5.420.58)S2(I6.870.12), ideally Sn27S10I34, with probably a narrow solid solution field on the SnS–SnI2 joint.  相似文献   

20.
Nanophase Fe3O4 and Fe2O3 were synthesized through a precipitation method and were utilized for the removal of either arsenic (III) or (V) from aqueous solution as a possible method for drinking water treatment. The synthesized nanoparticles were characterized using X-ray diffraction, which showed that the Fe3O4 and the Fe2O3 nanoparticles had crystal structures of magnetite and hematite, respectively. In addition, Secherrer's equation was used to determine that the grain size nanoparticles were 12 ± 1.0 nm and 17 ± 0.5 nm for the Fe2O3 and Fe3O4, respectively. Under a 1 h contact time, batch pH experiments were performed to determine the optimum pH for binding using 300 ppb of either As(III) or (V) and 10 mg of either Fe3O4 or Fe2O3. The binding was observed to be pH independent from pH 6 through pH 9 and a significant drop in the binding was observed at pH 10. Furthermore, batch isotherm studies were performed using the Fe2O3 and Fe3O4 to determine the binding capacity of As(III) and As(V) to the iron oxide nanomaterials. The binding was found to follow the Langmuir isotherm and the capacities (mg/kg) of 1250 (Fe2O3) and 8196 (Fe3O4) for As(III) as well as 20,000 (Fe2O3) and 5680 (Fe3O4) for As(III), at 1 and 24 h of contact time, respectively. The As(V) capacities were determined to be 4600 (Fe2O3), 6711(Fe3O4), 4904 (Fe2O3), and 4780 (Fe3O4) mg/kg for nanomaterials at contact times of 1 and 24 h respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号