首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study experimentally the creeping penetration of guest (percolating) grains through densely packed granular media in two dimensions. The evolution of the system of the guest grains during the penetration is studied by image analysis. To quantify the changes in the internal structure of the packing, we use Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different underlying substructures (domains). We first consider the impact of the effective gravitational acceleration on upward penetration of grains. It is found that the higher effective gravity increases the resistance to upward penetration and enhances structural organization in the system of the percolating grains. We also focus our attention on the dependence of the structural rearrangements of percolating grains on some parameters like polydispersity and the initial packing fraction of the host granular system. It is found that the anisotropy of penetration is larger in the monodisperse case than in the bidisperse one, for the same value of the packing fraction of the host medium. Compaction of initial host granular packing also increases anisotropy of penetration of guest grains. When a binary mixture of large and small guest grains is penetrated into the host granular medium, we observe size segregation patterns.  相似文献   

2.
Computer and theoretical investigation of particle arrangements in a thin film of a magnetic fluid at low temperatures is presented. The approach developed by us combines the simplicity of simulations and accuracy of the analytical model and allows studying particle aggregates and their properties. The systems under investigation were: a monodisperse and a bidisperse model in the absence of an external magnetic field, and a monodisperse model under the influence of an external field. Careful analysis of the most probable microstructures in a ferrofluid thin layer has been carried out at 0 K. The analysis of the stability of structures under thermal fluctuations allows making a conclusion about the microstructure of investigated system at low temperatures.  相似文献   

3.
We study the jamming of bead assemblies placed in a cylindrical container whose bottom is pierced with a circular hole. Their jamming behavior is quantified here by the median jamming diameter, that is the diameter of the hole for which the jamming probability is 0.5. Median jamming diameters of monodisperse assemblies are obtained numerically using the Distinct Element Method and experimentally with steel beads. We obtain good agreement between numerical and experimental results. The influence of friction is then investigated. In particular, the formation of concentric bead rings is observed for low frictions. We identify this phenomenon as a boundary effect and study its influence on jamming. Relying on measures obtained from simulation runs, the median jamming diameter of bidisperse bead assemblies is finally found to depend only on the volume-average diameter of their constituting beads. We formulate this as a tentative law and validate it using bidisperse assemblies of steel beads.  相似文献   

4.
The shear flow of two-dimensional foams is probed as a function of shear rate and disorder. Disordered, bidisperse foams exhibit strongly shear rate dependent velocity profiles. This behavior is captured quantitatively in a simple model based on the balance of the time-averaged drag forces in the system, which are found to exhibit power-law scaling with the foam velocity and strain rate. Disorder makes the scaling of the bulk drag forces different from that of the local interbubble drag forces, which we evidence by rheometrical measurements. In monodisperse, ordered foams, rate independent velocity profiles are found, which lends further credibility to this picture.  相似文献   

5.
We use the Surface Evolver to determine the shear modulus G of a dry 2D foam of 2500 bubbles, using both extensional and simple shear. We examine G for a range of monodisperse, bidisperse and polydisperse foams, and relate it to various measures of the structural disorder of each foam. In all cases, the shear modulus of a foam decreases with increasing disorder.  相似文献   

6.
We have experimentally studied granular arches through electrical measurements. The packing is composed of 2d metallic pentagons and is submitted to small taps. Large electrical fluctuations are observed and they are distributed along power laws. This indicates the presence of long-time memory effects even the packing density remains constant around a value ρ = 0.72±0.02. Large electrical fluctuations should be associated with the breaking/creation of granular arches. Received 3 October 2000  相似文献   

7.
唐瀚玉  王娜  吴学邦  刘长松 《物理学报》2018,67(20):206402-206402
在恒温25 ℃剪切振动条件下,测量不同水分含量的NaCl湿颗粒体系的力学谱(能量耗散tanφ和剪切模量G).研究发现,随着剪切振幅增大,NaCl湿颗粒体系的剪切模量G和能量耗散tanφ都表现出类似于干颗粒体系的阻塞(Jamming)转变行为.随着体系中水含量的增大,湿颗粒体系的剪切模量G和能量耗散tanφ在质量分数约等于11%的临界水浓度下均出现一个峰值,且峰位与应变振幅无关,表明此时颗粒之间主要的作用力发生了变化.  相似文献   

8.
Numerical studies on the unjamming packing fraction of bi- and polydisperse disk packings, which are generated through compression of a monodisperse crystal, are presented. In bidisperse systems, a fraction f + = 0.400 up to 0.800 of the total number of particles has their radii increased by D \Delta R , while the rest has their radii decreased by the same amount. Polydisperse packings are prepared by changing all particle radii according to a uniform distribution in the range [- D \Delta R,D \Delta R] . The results indicate that the critical packing fraction is never larger than the value for the initial monodisperse crystal, f0 \phi_{0}^{} = p \pi/?{12} \sqrt{{12}} , and that the lowest value achieved is approximately the one for random close packing. These results are seen as a consequence of the interplay between the increase in small-small particle contacts and the local crystalline order provided by the large-large particle contacts.  相似文献   

9.
It is shown that the shear wave speed in a granular medium is less than that in an elastic solid of the same shear modulus-to-density ratio. Shear and compressional wave speeds are derived for granular media using a conservation of energy approach. The grains are assumed to be spherical with elastic Hertzian contacts of constant stiffness. The affine approximation is used to determine the relative displacements of grain centers, and it is also assumed that the grains are small compared to a wavelength, consistent with the effective medium approximation. Potential and kinetic energies associated with linear motion are the same as those in an elastic solid, but it is found that shear wave propagation in a granular medium involves additional energies associated with grain rotation. The partition of energies results in a reduction in the shear wave speed, relative to an elastic solid of the same shear modulus-to-density ratio. It is shown that the reduction is an inherent property of granular media, independent of any departure from the affine approximation or fluctuations in coordination number or contact stiffness. The predicted wave speed ratios are consistent with published measurements.  相似文献   

10.
This work is devoted to the development of the theoretical model, permitting to find the pair correlation function and the structure factor of magnetic fluids taking into account the polydispersity of magnetic particles. The magnetic fluid was modeled as a system of bidisperse dipolar hard spheres. We compared the results obtained on the basis of monodisperse and bidisperse models. The consideration of the particle polydispersity affects the behavior of the structure factor: the value of the first peak decreases and becomes broader in comparison to the monodisperse case.  相似文献   

11.
David R. Robinson 《Molecular physics》2018,116(21-22):3181-3195
ABSTRACT

Simulated external electric fields are applied to polarisable species containing either a monodisperse of bidisperse distribution of polarisabilities. The magnitude of the external field and the polarisabilities are systematically varied. The application of an external field (of sufficient magnitude) is found to induce chain formation (as expected). The monodisperse systems are found to ‘self-assemble’ with larger induced dipole moments effectively clustering in chains as a result of significant dipole-induced dipole effects. The distribution of the chain lengths is characterised as a function of the applied field and the atom polarisability. For the bidisperse systems, the external field induces chain formation and a partial segregation, in which the more polarisable species preferentially form chains. The chain lengths are again determined as a function of field strength and the atom polarisabilities. Scaling behaviour is analysed.  相似文献   

12.
The particle dynamics and shear forces of granular matter in a Couette geometry are determined experimentally. The normalized tangential velocity V(y) declines strongly with distance y from the moving wall, independent of the shear rate and of the shear dynamics. Local rms velocity fluctuations deltaV(y) scale with the local velocity gradient to the power 0.4+/-0.05. These results agree with a locally Newtonian, continuum model, where the granular medium is assumed to behave as a liquid with a local temperature [deltaV(y)](2) and density dependent viscosity.  相似文献   

13.
Compaction from a random-loose-packed to a random-close-packed phase is observed when monodisperse granular beds are shaken, but beyond this packing, the system freezes up in a jammed structure. Here we report a technique to grow large hard-sphere granular crystals, with perfect stacking and no defects by means of a "gas phase" epitaxial procedure. We study the growth mechanism and provide evidence that the observed granular crystallization is driven by gravity and energy dissipation.  相似文献   

14.
We investigate experimentally the diffusion properties of a bidimensional bidisperse dry granular material under quasistatic cyclic shear. The comparison of these properties with results obtained both in computer simulations of hard spheres systems and Lennard-Jones liquids and experiments on colloidal systems near the glass transition demonstrates a strong analogy between the statistical behavior of granular matter and these systems, despite their intrinsic microscopic differences (thermal vs athermal). More specifically, we study in detail the cage dynamics responsible for the subdiffusion in the slow relaxation regime, and obtain the values of relevant time and length scales.  相似文献   

15.
We show that geometric confinement dramatically affects the shear-induced configurations of dense monodisperse colloidal suspensions; a new structure emerges, where layers of particles buckle to stack in a more efficient packing. The volume fraction in the shear zone is controlled by a balance between the viscous stresses and the osmotic pressure of a contacting reservoir of unsheared particles. We present a model that accounts for our observations and helps elucidate the complex interplay between particle packing and shear stress for confined suspensions.  相似文献   

16.
本文通过求解SST湍流模型以及三维Unsteady Reynolds-Averaged Navier-Stokes (URANS)方程,研究了单级轴流透平轮缘密封整周模型的流动与封严特性。分析了不同冷气流量下的封严效率与压力波动的变化,并通过与仅保留静叶和仅保留动叶的简化模型比较,分析了动静叶对主流与盘腔内压力波动的影响。结果表明:盘腔内部封严效率存在周向波动但无明显周期性规律,主流与盘腔内的压力周向波动受动静叶的影响,存在明显的周期性规律,静叶下游压力波动周期数等于静叶数,动叶上游与盘腔内部压力波动周期数等于动叶数。  相似文献   

17.
Dynamic acoustoelastic testing is applied to weakly pre-loaded unconsolidated water-saturated glass beads. The gravitational acceleration produces, on the probed beads, a static stress of order 130 Pa, thus the granular medium is close to the jamming transition. A low-frequency (LF) acoustic wave gently disturbs the medium, inducing successively slight expansion and compaction of the granular packing expected to modulate the number of contacts between beads. Ultrasound (US) pulses are emitted simultaneously to dynamically detect the induced modification of the granular skeleton. US propagation velocity and attenuation both increase when the LF pressure increases. The quadratic nonlinear elastic parameter β, related to the pressure dependence of US propagation velocity, was measured in the range 60-530 if water-saturated glass beads are considered as an effective medium. A dynamic modification of US scattering induced by beads is proposed to modulate US attenuation. Complex hysteretic behaviors and tension-compression asymmetry are also observed and analyzed by time-domain and spectral analyses. Furthermore acoustic nonlinearities are measured in cases of quasi-static and dynamic variations of the LF wave amplitude, providing quantitatively similar acoustic nonlinearities but qualitatively different.  相似文献   

18.
For this study, we investigated the effects of reactive gases (oxygen, nitrogen, and argon) on the shear behavior and fracture toughness of HDPE/steel joints by treating high-density polyethylene (HDPE) with plasma using a microwave method. We also investigated the effect of plasma treatment on the physical and chemical changes on the surface of HDPE. HDPE/steel joints were fabricated using a secondary bonding process. The results showed that the shear strength and fracture toughness of HDPE/steel joints treated with different reactive gases were ordered as follows, oxygen > nitrogen > argon. Specifically, the shear strength and fracture toughness of oxygen plasma-treated HDPE/steel joints were approximately 7600% and 2400% greater, respectively, than that of untreated HDPE/steel joints. The improvements in shear strength and fracture toughness are attributed to increase in surface roughness and the creation of carbonyl functional groups on the HDPE surface via plasma treatment.  相似文献   

19.
The dynamics of a bidimensional dense granular packing under cyclic shear is experimentally investigated close to the jamming transition. Measurement of multipoint correlation functions are produced. The self-intermediate scattering function, displaying slower than exponential relaxation, suggests dynamic heterogeneity. Further analysis of four point correlation functions reveal that the grain relaxations are strongly correlated and spatially heterogeneous, especially at the time scale of the collective rearrangements. Finally, a dynamical correlation length is extracted from a spatiotemporal pattern of mobility. Our experimental results open the way to a systematic study of dynamic correlation functions in granular materials.  相似文献   

20.
By molecular dynamics simulations we investigate the order-disorder transitions induced in granular media by an applied drive combining vibrations and shear. As the steady state is attained, the pack is found in disordered configurations for comparatively high intensities of the drive; conversely, ordering and packing fractions exceeding the random close packing are found when vibrations and shear are weak. As forcing amplitudes get smaller, we find diverging time scales in the dynamics, as the system enters a jamming region. Under this perspective, our picture supports the intuition that externally applied forcing has, in driven granular media, a role similar to temperature in thermal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号