首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the unsteady Hartmann flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles. The energy equations for both the fluid and dust particles including the viscous and Joule dissipation terms, are solved numerically using finite differences to get the temperature distributions.  相似文献   

2.
An exact solution of MHD channel flow between two horizontal parallel plates taking into account free convection currents and the Hall currents is presented. Solutions for the primary and secondary velocity, the induced magnetic field, the skin friction, and the temperature are derived. The velocity field and magnetic field are shown on graphs, and the values of the skin friction and the rate of heat transfer are indicated on tables. The results are discussed in terms of the hall parameter, the Hartmann number, and the Grashof number  相似文献   

3.
A new Thermal Precipitator (TP) was developed as a personal sampler for nanoparticle exposure studies. Two parallel 20-mm-long plates with different but uniform temperatures were introduced into the TP with an appropriate gap distance, to achieve a uniform temperature gradient along the length of the plates. Particles are thermophoretically deposited on the colder plate in the TP which acts as the substrate. Analytical calculations were carried out to determine an optimal plate gap distance and temperature gradient in the TP. A simulation grid was created from the resulting geometry which was used for numerical modelling with a CFD Software. Results from the simulations showed a uniform deposition of particles up to the size range of about 300 nm for a temperature gradient of 15 K/mm and a 1-mm gap distance, independent of the orientation of the TP during sampling. In contrast to the old TP where up to 32 SEM images of its non-uniform particle deposition had to be evaluated to obtain an average particle size distribution, an evaluation of the uniform deposition with the new TP is much more simplified, remarkably reducing the time and cost of the evaluation, while providing more accurate results.  相似文献   

4.
Vibration analysis of the family of rectangular plates with two opposite sides simply supported can be simplified by assuming mode shapes. In the present paper a vibration analysis of such plates which are heated so as to have a temperature varying in the direction parallel to these sides is presented. A steady state temperature which satisfies the Laplace equation is considered. Due to the assumption of mode shapes the governing plate differential equation, which in general is a function of the x and y co-ordinates, becomes a function of one co-ordinate. This equation is analyzed by a finite difference method and solved by a standard simultaneous iteration technique. The accuracy of the method is ascertained by comparing the results for some well known boundary conditions when there is no temperature effect with the standard solutions available in the literature. From the results an attempt has been made to correlate the natural frequency with the temperature. Plates of uniform thickness with different length to breadth ratios have been analyzed. The assumed linear temperature distribution satisfies the Laplace equation and the plate is free to expand in its plane at its edges so that no thermal stresses will be induced.  相似文献   

5.
Measurements of the electrical resistivity and the Hall effect of the Heusler alloys NiMnSb, PtMnSb, CoMnSb, AuMnSb, CuMnSb and PtMnSn are reported. The anomalous Hall effect is analyzed in terms of the contributions from skew scattering and side jump. The spin polarization of the charge carriers is proportional to the magnetization. This is an indication that the electronic structure as a function of the temperature is best described by a local band model, with complete spin polarization of charge carriers parallel to the local magnetization at all temperatures. The spin disorder resistivity of NiMnSb is calculated with the local band model. The magneto-optical Kerr effect of PtMnSb is enhanced by the plasma resonance of the charge carriers.  相似文献   

6.
We investigated SmC* films sandwiched between silane coated glass plates and observed formation of textures exhibiting a uniform tilt of the smectic layers with respect to the boundary plates. The layer tilt angle increases from zero to as the sample is cooled from the smectic A phase to room temperature. These films show linear electro-optical effects because the permanent polarization can be aligned so that it has a component parallel to the applied field without changing the layer structure. Our analysis indicates that mainly two effects determine the layer tilt. On the one hand, the surface tension tends to minimise the layer tilt. On the other hand, the surface energy promotes the director to be normal to the boundary plates. Received 17 July 1998  相似文献   

7.
This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.  相似文献   

8.
The planar Hall effect in a ferromagnetic conductor is considered within a simple two-liquid hydro-dynamic model. It is shown that, even in the simple case of an isotropic Fermi surface in the absence of thermal spread, the magnitude of the Hall effect is comparable to that in semiconductors because of the presence of two groups of conduction electrons with their spins parallel and perpendicular to the quantization axis, respectively. In addition to the planar Hall field, a spin flux parallel to this field arises, with the consequence that the extent of spin polarization of the conduction electrons varies along the Hall field direction (planar spin Hall effect).  相似文献   

9.
The temperature dependence of carrier transport properties of Alx Gal-xN/InyGal-yN/CaN and AlzGal-xN/GaN heterostructures has been investigated. It is shown that the Hall mobility in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures is higher than that in Alo.25Gao.75N/GaN heterostructures at temperatures above 500 K, even the mobility in the former is much lower than that in the latter at 300 K. More importantly, the electron sheet density in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures decreases slightly, whereas the electron sheet density in Al0.25Gao.75N/CaN heterostructures gradually increases with increasing temperature above 500 K. It is believed that an electron depletion layer is formed due to the negative polarization charges at the Iny Can-yN/GaN heterointerface induced by the compressive strain in the InyCal-yN channel, which effectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.  相似文献   

10.
Summary In the present paper the integral quantum Hall effect is studied using the Schrauben functions which are suitable eigenfunctions to describe the quantum transport in uniform electric and magnetic fields. The effect of Landau band structure on the Hall quantization is investigated. A model calculation of the conductivities σxy and σyy is presented and the onset of a Hall current dissipation is discussed. Also, the quantum oscillations of a free-electron gas into the quantum Hall regime are studied, including the electric-field effect.  相似文献   

11.
This paper deals with the radiation energy transport within a plasma gas enclosed between two parallel black plates, together with the interaction of radiation and conduction under uniform heat generation. An expression for the radiation heat flux is being obtained in terms of the modified emissivity without resorting to the assumption of linearized radiation previously used. Results for the temperature and radiation heat flux distributions are obtained for various values of heat generation and for different spacings between the plates. The results presented are for hydrogen plasma gas at pressures of 0.43 and 37.5 atm with wall temperatures of 10,000°K. The present results for the centerline temperatures are compared with those utilizing linearized radiation, and it was found that the linearized radiation assumption overestimates the temperature values especially for large heat generations.  相似文献   

12.
The Hall effect in single crystal has been investigated at 63 kOe over the 6–280 K temperature range. The Hall coefficient reverses sign as a function of temperature. The high temperature value is less negative then theoretical predictions.  相似文献   

13.
The effect of Hall current on the steady magnetohydrodynamics (MHD) flow of an electrically conducting, incompressible Burgers' fluid between two parallel electrically insulating infinite planes is studied. The MHD flow is generated by applying constant pressure gradient. An external uniform magnetic field normal to the disks is applied. The disks are kept at two different constant temperatures. Exact solutions are obtained for the governing momentum and energy equations. The effects of Hartmann number M, Reynolds number Re, Prandtl number Pr, Eckert number Ec, pressure gradient dp/dx and Hall parameter η are examined.  相似文献   

14.
We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.  相似文献   

15.
程红波 《中国物理快报》2005,22(12):3032-3035
We analyse the Casimir effect for parallel plates at finite temperature in the presence of compactified universal extra dimensions and analytically show the thermal corrections to the effect in detail. The Casimir effect for different sizes of universal extra dimensions is investigated to test the five-dimensional Kaluza-Klein theory.  相似文献   

16.
Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are calculated with a numerical iterative technique in the framework of Fermi-Dirac statistics. Lattice scatterings due to polar-mode longitudinal optic (LO) phonons, and acoustic phonons via deformation potential and piezoelectric couplings, are considered together with background and remote ionized impurity interactions. The parallel mode of piezoelectric scattering is found to contribute more than the perpendicular mode. We observe that the Hall mobility decreases with increasing temperature but increases with increasing channel width. The magnetoresistance coefficient is found to decrease with increasing temperature and increase with increasing magnetic field in the classical region.   相似文献   

17.
In this paper, we observe the transmittance of fiber optic plates (FOPs) which were hot-pressed by different temperature and different pressure. Experimental results show that the effect of temperature and pressure in hot-pressing process on the transmittance is relatively large, especially temperature. Meanwhile, the FOPs hot-pressed by high-pressure and low-temperature are uniform and have high transmittance.  相似文献   

18.
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.  相似文献   

19.
The steady flow and heat transfer of an electrically conducting fluid with variable viscosity and electrical conductivity between two parallel plates in the presence of a transverse magnetic field is investigated. It is assumed that the flow is driven by combined action of axial pressure gradient and uniform motion of the upper plate. The governing nonlinear equations of momentum and energy transport are solved numerically using a shooting iteration technique together with a sixth-order Runge-Kutta integration algorithm. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that the combined effect of magnetic field, viscosity, exponents of variable properties, various fluid and heat transfer dimensionless quantities and the electrical conductivity variation, have significant impact on the hydromagnetic and electrical properties of the fluid.  相似文献   

20.
U D Kini 《Pramana》1976,7(6):378-384
The flow of a nematic liquid crystal between plane parallel plates, with one plate moving with uniform velocity relative to the other, is discussed. The apparent viscosity, orientation and velocity profiles are computed forp-azoxyanisole as functions of shear rate and magnetic field for symmetric and asymmetric molecular alignment at the plates. For symmetric homeotropic boundary condition, a magnetic field applied along the flow direction exhibits a threshold reminiscent of a Freedericksz transition in the hydrostatic case. In general the apparent viscosity for the asymmetric boundary condition is less than that for the symmetric case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号