首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Total reflection X-ray fluorescence analysis (TXRF) offers a nondestructive qualitative and quantitative analysis of trace elements. Due to its outstanding properties TXRF is widely used in the semiconductor industry for the analysis of silicon wafer surfaces and in the chemical analysis of liquid samples. Two problems occur in quantification: the large statistical uncertainty in wafer surface analysis and the validity of using an internal standard in chemical analysis. In general TXRF is known to allow for linear calibration. For small sample amounts (low nanogram (ng) region) the thin film approximation is valid neglecting absorption effects of the exciting and the detected radiation. For higher total amounts of samples deviations from the linear relation between fluorescence intensity and sample amount can be observed. This could be caused by the sample itself because inhomogeneities and different sample shapes can lead to differences of the emitted fluorescence intensities and high statistical errors. The aim of the study was to investigate the elemental distribution inside a sample. Single and multi-element samples were investigated with Synchrotron-radiation-induced micro X-ray Fluorescence Analysis (SR-μ-XRF) and with an optical microscope. It could be proven that the microscope images are all based on the investigated elements. This allows the determination of the sample shape and potential inhomogeneities using only light microscope images. For the multi-element samples, it was furthermore shown that the elemental distribution inside the samples is homogeneous. This justifies internal standard quantification.  相似文献   

2.
The aim of this work was to analyze the composition of river waters and to study their quality by detecting possible contaminants. The samples were taken at 32 points of the Suquía River in its stream across the city of Córdoba (in the Province of Córdoba, Argentina). The samples were analyzed with total reflection X-ray fluorescence (TXRF) using beam guides. Beam guides made of two Si plate reflectors were used as sample carriers and to guide the X-ray photons to the sample; the measurements were taken using the characteristic configuration that ensures the best excitation and detection conditions (in TXRF). The analyses were carried out by preconcentration of the water samples and by adding an internal standard (Gallium); small amounts of samples (30 μl) were deposited on the Si reflector plate and they were then analyzed in the total reflection regime. Spectra were analyzed with standard methods using conventional programs. The results show interesting behaviors of the concentration of trace elements along the river: elements of low atomic number (such as Ca, Cl, S, K) present higher concentrations as compared to high Z elements (such as Fe, Zn, Br, Sr); the concentrations of light elements follow a similar behavior along the stream, the same situation is observed in the set of elements with high atomic number. Some samples present high concentrations in certain elements indicating possible sources of contamination.  相似文献   

3.
There is a growing interest in determination of low Z elements, i.e., carbon to phosphorus, in biological samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon).Biofilms can be used for biomonioring purposes in the aquatic environment. Besides the trace metals, especially the determination of the carbon content is important for the better understanding of the early stage of biofilm formation. For this, an ATI low Z spectrometer equipped with Cr-anode X-ray tube, multilayer monochromator, vacuum chamber, and a Si(Li) detector with ultra thin window was used. Biofilms were grown on two different artificial supports (granite and plexiglass), freeze dried, suspended in high purity water and analyzed. As an internal standard the natural titanium content of the biofilms was used. The accuracy of the method was checked by total carbon measurement using a combusting carbon analyzer.  相似文献   

4.
A nanoliter droplet deposition unit was developed and characterized for application of sample preparation in TXRF. The droplets produced on quartz reflectors as well as on wafers show a good reproducibility, also the accuracy of the pipetted volume could be proved by a quantitative TXRF analysis using an external standard. The samples were found to be independent of rotation of the sample carrier. Angle scans showed droplet residue behavior, and the fluorescence signal is relatively invariant of the angle of incidence below the critical angle, which is useful for producing standards for external calibration for semiconductor surface contamination measurements by TXRF. Further it could be demonstrated that the nanoliter deposition unit is perfectly able to produce patterns of samples for applications like the quantification of aerosols collected by impactors.  相似文献   

5.
There are several TXRF spectrometers commercially available for chemical analysis as well as for wafer surface analysis, but there is up to now no spectrometer for chemical analysis available that allows to measure samples under vacuum conditions. Simply a rough vacuum of 10−2 mbar for the sample environment reduces the background due to scattering from air, thus to improve the detection limits. The absorption of low energy fluorescence radiation from low Z elements is reduced and therefore extends the elemental range to be measured down to Na. Finally evacuation of the chamber removes the Ar K-lines from the spectrum.The new vacuum chamber for TXRF named WOBISTRAX is equipped with a 12-position sample changer, a 10-mm2 silicon drift detector (SDD) with an 8-μm Be entrance window and electrical cooling by Peltier effect, so no LN2 is required. The chamber was designed to be attached to a diffraction tube housing. WOBISTRAX can be operated with a 3 kW long fine focus Mo-X-ray tube and uses a Mo/Si multilayer for monochromatization. The modified software is performing the motion control between sample changer and MCA features.The performance is expressed in terms of detection limits which are 700 fg Rb for Mo Kα excitation with 50 kV, 40 mA excitation conditions, 1000 s livetime. Using a Cr-X-ray tube for excitation of Al the achieved detection limits are 52 pg. So it could be shown that with the same measuring chamber and using an SDD with 8 μm Be window and a Cr-tube for excitation, low Z elements can be also measured with good detection limits.  相似文献   

6.
In grazing-emission X-ray fluorescence (GEXRF) spectrometry wavelength-dispersive detection can be applied. Much softer radiation and hence lighter elements than in total-reflection X-ray (TXRF) spectrometry can thus be detected. We used simulations to investigate methods of quantification of GEXRF results involving soft characteristic radiation. From these studies, it is concluded that for ultra-thin layers, e.g. the sub-monolayer amounts encountered in semiconductor contamination analysis, calibration plots are linear. For thicker layers, quantification should be performed very carefully because of deviations from linearity due to absorption of radiation and to oscillations in the calibration curve. These oscillations are caused by interference of fluorescence radiation emitted directly towards the detector and radiation reflected at the sample–substrate interface. Suggestions for a judicious choice of measurement conditions are made and the benefits of internal standardisation are discussed.  相似文献   

7.
Total-reflection X-ray fluorescence (TXRF) is widely used for the control of metallic contamination caused by surface preparation processes and silicon materials. At least three companies supply a variety of TXRF systems to the silicon integrated circuit (IC) community, and local calibration of these systems is required for their day to day operation. Differences in local calibration methods have become an issue in the exchange of information between IC manufacturers' different FABs (Fabrication Facility) and also between silicon suppliers and IC FABs. The question arises whether a universal set of fluorescence yield curves can be used by these different systems to scale system sensitivity from a single element calibration for calculation of elemental concentrations. This is emphasized by the variety of experimental conditions that are reported for TXRF data (e.g. different angles of incidence for the same X-ray source, different X-ray sources, etc.). It appears that an instrumental factor is required. We believe that heavy ion backscattering spectrometry (HIBS) provides a fundamental method of calibrating TXRF reference materials, and can be used in calculating this instrumental factor. In this paper we briefly describe the HIBS system at the Sandia National Laboratories HIBS User Facility and its application to the calibration of TXRF reference materials. We will compare HIBS and TXRF mapping capabilities and discuss the issues associated with the restrictions of some older TXRF sample stages. We will also discuss Motorola's cross-calibration of several TXRF systems using different elements as references.  相似文献   

8.
At present, there is a considerable interest in Hg monitoring in wastewater samples due to its widespread occurrence and the high toxicity of most of its compounds. Hg determination in water samples by means of total reflection X-ray fluorescence spectrometry (TXRF) entails some difficulties due to the high vapor pressure and low boiling point of this element that produce evaporation and loss of Hg from the surface of the reflector during the drying process, commonly used for sample preparation in TXRF analysis.The main goal of the present research was to develop a fast and simple chemical strategy to avoid Hg volatilization during the analysis of wastewater samples by TXRF spectrometry. Three different analytical procedures were tested for this purpose: (i) increasing the viscosity of the wastewater sample by adding a non-ionic surfactant (Triton® X-114), (ii) Hg immobilization on the quartz reflectors using the extractant tri-isobutylphosphine (Cyanex 471X) and (iii) formation of a stable and non-volatile Hg complex into the wastewater sample. The best analytical strategy was found to be the formation of a Hg complex with thiourea (pH = 10) before the deposition of 10 μL of sample on the reflector for following TXRF analysis. Analytical figures of merit such as linearity, limits of detection, accuracy and precision were carefully evaluated. Finally, the developed methodology was applied for the determination of Hg in different types of wastewater samples (industrial effluents, municipal effluents from conventional systems and municipal effluents from constructed wetlands).  相似文献   

9.
The aim of the paper is the simplification of calibration procedures in the investigation of multi-element-systems by calculating calibration curves. This requires, as well as taking into account the measuring geometry and the detector properties, above all the calculation of the number of the characteristic X-rays emitted by the sample per incident particle. For the calculation of the thick target yield a computer programme has been developed which makes possible a simple exchange of subroutines describing the stopping power of the sample, the cross-section of K-shell ionization, the fluorescence yield and the matrix absorption for the resulting K-X-rays of the elements contained in the sample. The agreement between experiment and calculation is discussed, when various approximations for the functions mentioned are used, as well as the possible influence of the grain size and surface roughness of the samples on the measurements, on which the calculations are based.   相似文献   

10.
A newly developed, portable total reflection X-ray fluorescence (TXRF) spectrometer was tested during a field campaign on Chilean lakes and a German river in January 2002. The field measurements were compared with laboratory measurements carried out on a stationary instrument in the German laboratory. For method validation certified reference material (NIST SRM 1640 Trace elements in natural water) and water samples from different freshwater sources were analyzed with both techniques and evaluated statistically. Based on these preliminary results, it could be concluded that the portable TXRF is a useful technique for the quantitative elemental screening of freshwater samples during field campaigns. Future tests with biological samples (e.g. biofilms and zooplankton), and suspended matter will provide information about the suitability of the portable TXRF for these materials.  相似文献   

11.
Quartz reflectors are a common substrate for total reflection X-ray fluorescence (TXRF) analysis. Especially low masses of trace elements can be determined on these surfaces. In the present work, various complexing reagents were immobilized on the surface of quartz reflectors. The reflectors were immersed in mercury solutions and selective mercury collection took place. The effect of immersion time was examined and a few minutes were found adequate. The reflectors were analysed for mercury by TXRF. Different complexing reagents showed different collection capabilities; 4-(2-pyridazo-resorcinol) gave the best among them. The effect of various experimental parameters was examined like pH, interferences from other ions, etc. Mercury speciation was successfully tested by comparing inorganic mercury results with the methyl mercury ones. A very good selectivity for inorganic mercury was found. It was achieved very good linearity in the 1-500 ng mL−1 mercury concentration range and the minimum detection limit was equal to 2.5 ng mL−1.  相似文献   

12.
Total Reflection X-ray Fluorescence analysis (TXRF) is widely used in semiconductor industry for the analysis of silicon wafer surfaces. Typically an external standard is used for the calibration of the spectrometer. This is sensitive to errors in quantification. For small sample amounts the thin film approximation is valid, absorption effects of the exciting and the detected radiation are neglected and the relation between sample amount and fluorescence intensity is linear. For higher total sample amounts deviations from linearity have been observed (saturation effect). These deviations are one of the difficulties for external standard quantification.A theoretical determination of the ideal TXRF sample shape is content of the presented work with the aim to improve the calibration process and therefore the quantification.The fluorescence intensity emitted by different theoretical sample shapes was calculated, whereby several parameters have been varied (excitation energy, density, diameter/height ratio of the sample). It was investigated which sample shape leads to the highest fluorescence intensity and exhibits the lowest saturation effect. The comparison of the different sample shapes showed that the ring shape matches the ideal TXRF sample shape best.  相似文献   

13.
An electrolytic separation and enrichment technique was developed for the determination of trace elements by total-reflection X-ray fluorescence spectroscopy (TXRF). The elements of interest are electrodeposited out of the sample solution onto a solid, polished disc of pure niobium which is used as sample carrier for the TXRF measurement. The electrochemical deposition leads to a high enrichment of the analytes and at the same time to a removal of the matrix. This results in substantially improved detection limits in the lower picogram per gram region. The deposited elements are directly measured by TXRF without any further sample preparation step. The homogeneous thin layer of the analytes is an ideal sample form for TXRF, because scattered radiation from the sample itself is minimized. The proposed sample preparation method is useful particularly for the analysis of heavy metals in liquid samples with for TXRF disturbing matrices, e.g. sea water.  相似文献   

14.
An intercomparison survey has been carried out in order to evaluate the performance of two related X-ray fluorescence techniques as compared to the achievements of several other analytical techniques applied for trace elements determination in drinking water. A relatively new technique, total reflection X-ray fluorescence (TXRF) and a novel related technique, grazing emission X-ray fluorescence (GEXRF) have been used for the analysis of a mineral water sample. The concentrations of the following elements have been determined: Na, Mg, K, Ca, Ni, Cu, Zn and Sr. The mineral water sample has also been analyzed by a number of other analytical techniques, routinely utilized in drinking water quality control. The analyses were performed in eleven laboratories which reported 286 individual determinations producing 75 laboratory means. From the obtained results, it can be concluded that the TXRF technique is suitable for a direct determination of heavy elements in drinking water (above potassium, Z = 19). This technique can compete with other analytical techniques routinely used in water quality monitoring. First results obtained with GEXRF spectrometry show that this technique can be successfully applied for the determination of low-Z elements in drinking water. However, results for sodium and magnesium were systematically too low, indicating that modifications of the quantification procedure may be required to improve the accuracy of determination for these light elements.  相似文献   

15.
A new experimental technique for surface imaging using total-reflection X-ray fluorescence (TXRF) is described. Although TXRF has so far been used to analyze the average chemical composition of rather large sample areas in the order of centimeters squared, a new opportunity to obtain spatial information has arisen through the combination of conventional TXRF and position-sensitive measurement using a collimator and a CCD camera. The most significant point here is that the extremely close detector sample geometry of TXRF measurement fits very well with the present imaging procedure. Scanning of the sample and/or incident beam is not necessary, and therefore the exposure time is reasonably short, typically 3–10 min. The number of pixels is approximately 1 million, and the spatial resolution obtained was several tens of microns in the present preliminary case. The selective-excitation capability of tunable monochromatic synchrotron radiation enhances the present imaging technique. Changing the energy of incident photons makes it possible to distinguish the elements, and one can obtain a surface image of the specific elements.  相似文献   

16.
The aim of this work was to investigate the heavy metal accumulation by natural biofilms living in the catchment area of the Tisza river in Hungary, as well as in biofilms cultivated in vitro. Laboratory tests have demonstrated that metals can be adsorbed on biofilms, depending on their concentration and on the availability of free sorptive places. Biofilms were cultivated in vitro in natural freshwater from the Saale river, Germany. After reaching the plateau phase, Cu was added to reach a concentration of 100 µg/L. An increase of its mass fraction in the biofilm was observed, which caused the decrease of the concentration in the water phase. Unfortunately, the reactor wall was also found to act as adsorbent for Cu. More detailed results of our in vitro experiments will be published in a forthcoming paper. Naturally grown biofilm samples from exposed as well as background places at the Hungarian rivers Szamos and Tisza were collected in 2000 and 2002 after the cyanide spill, and analysed using total reflection X-ray fluorescence analysis (TXRF). Metal mass fraction differences as high as two orders of magnitude were found between polluted and unpolluted (background) sampling points. Extremely high concentration values, e.g. 5600 µg/g Zn in biofilm, were found at highly polluted sampling points. This means an enrichment factor of ca. 10,000 compared to the water phase.  相似文献   

17.
Summary Seven steel samples considered as reference materials have been analysed by atomic emission spectrometry with inductively coupled plasma (ICP-AES), atomic absorption spectrometry with flame and graphite furnace atomization (FAAS, GFAAS), differential pulse anodic stripping voltammetry (DPASV), X-ray fluorescence analysis with total reflection sample carrier (TXRF), and instrumental neutron activation analysis (INAA). Totally, 18 elements were determined. Over 90% of all results were in good agreement with the values determined by wet analytical methods. The deviations can be explained by systematical errors for special elements in distinct methods and by statistical errors, mainly at very low concentrations because some elements, in the low ng/g region, are not homogeneously distributed in the given material.formerly: Amt für Standardisierung, Meßwesen und Warenprüfung, Große Steinernetischstrasse 4, DDR-3010 Magdeburg  相似文献   

18.
TXRF is routinely used and suited to inspect Si wafer surfaces for possible impurities of metallic elements at the level of pg and below. Lightweight, compact sized, high-resolution Silicon drift detectors (FWHM=148 eV at 5.9 keV) electically cooled and with high throughput are ideally as the new spectrometer and for clean room application. A KETEK 5 mm2 Si drift detector was compared with a NORAN 80 mm2 SiLi in a previously commercially available ATOMIKA 8010 wafer analyzer. Results are presented and show that almost the same detection limits for both detector types were achieved analyzing a droplet sample containing 1 ng Ni on a Si wafer. Also, the performance to detect low Z elements like Na, excited with monochromatic Cr K radiation in a vacuum chamber was tested and detection limits of 600 pg obtained.  相似文献   

19.
An intercomparison survey has been carried out in order to evaluate the performance of two related X-ray fluorescence techniques as compared to the achievements of several other analytical techniques applied for trace elements determination in drinking water. A relatively new technique, total reflection X-ray fluorescence (TXRF) and a novel related technique, grazing emission X-ray fluorescence (GEXRF) have been used for the analysis of a mineral water sample. The concentrations of the following elements have been determined: Na, Mg, K, Ca, Ni, Cu, Zn and Sr. The mineral water sample has also been analyzed by a number of other analytical techniques, routinely utilized in drinking water quality control. The analyses were performed in eleven laboratories which reported 286 individual determinations producing 75 laboratory means. From the obtained results, it can be concluded that the TXRF technique is suitable for a direct determination of heavy elements in drinking water (above potassium, Z = 19). This technique can compete with other analytical techniques routinely used in water quality monitoring. First results obtained with GEXRF spectrometry show that this technique can be successfully applied for the determination of low-Z elements in drinking water. However, results for sodium and magnesium were systematically too low, indicating that modifications of the quantification procedure may be required to improve the accuracy of determination for these light elements. Received: 5 January 1998 / Revised: 17 February 1998 / Accepted: 18 February 1998  相似文献   

20.
There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号