首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex [Ag(DDM)2(CH3C6H4NH2)]NO3, where DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2], was synthesized and its structure was determined. The crystals are monoclinic, space group P21/n, a = 9.543(2) ?, b = 18.056(4) ?, c = 1.901(2) ?, β = 106.94(3)°, V = 1796.8(6) ?3, ρcalcd = 1.443 g/cm3, Z = 4. The Ag atom (at the inversion center) is coordinated at the vertices of an almost undistorted octahedron by six nitrogen atoms of the primary amino groups from four bridging DDM molecules and two terminal p-toluidine molecules (Ag-N, 2.546(3) ?; NAgN, 89.7–90.3°). Wavelike layers composed of conjugate multiunit metal rings, each containing four Ag+ ions and four bridging DDM ligands, are formed in the structure in the [101] direction (a 2D polymer). Uncoordinated NO 3 anions are arranged in the cavities between the layers and link them by N-H⋯O hydrogen bonds. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 12, pp. 1992–1998.  相似文献   

2.
(CH3NH3)2[SnCl6] undergoes a critical phase transition at 154.32 ± 0.06 K with the critical exponents α = 0.36 ± 0.04, α' = 0.19 ± 0.02, the critical entropy ratio 0.062 and the total transition entropy (1.60 ± 0.18) R. Infrared spectral change favors the order-disorder mechanism of the transition proposed from the thermodynamic data.  相似文献   

3.
The title compounds, which contain six-membered chelate rings locked in the chair conformation, have been prepared by the reaction of (C6H5)3P with the appropriate tetracarbonyl derivative in refluxing mesitylene.  相似文献   

4.
The energy of activation of CH 3 . radical rupture from the radical (CH3)2juvyCCH(CH3)2 is 142.2 kJ mol–1; the selfcombination rate constant is kc {(CH3)2juvyCCH(CH3)2}=107.3 dm3 mol–1 s–1.
CH 3 . (CH3)2juvyCCH(CH3)2 142,2 /, kc {(CH3)2juvyCCH(CH3)2}=107,3 3–1 –1.
  相似文献   

5.
Crystals of a new uranyl selenate complex [CH3(CH2)3NH3](H5O2)[(UO2)2(SeO4)3(H2O)] were obtained by isothermal evaporation at room temperature of its aqueous solution. The crystal structure was determined by the X-ray diffraction analysis. The observed character of the arrangement of organic molecules in the interlayer space confirms the concept of hydrophilic and hydrophobic zones.  相似文献   

6.
A new layered vanadium oxide [H3N(CH2)4NH3](V6O14) was synthesized hydrothermally under autogenous pressure at 180°C for 48 h from a mixture of H2N(CH2)4NH2 and V2O5 in aqueous solution. Its structure was determined from single-crystal X-ray diffraction at room temperature with final R=0.0774 and Rw=0.0893. It crystallizes in the monoclinic system (space group P21/n with a=9.74(2) Å, b=6.776(5) Å, c=12.60(2) Å, β=96.1(1)°, V=827(2) Å3 and Z=2). This compound contains mixed-valence V5+/V4+ vanadium oxide layers built from [VVO4] tetrahedra and pairs of edge-sharing [VIVO5] square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

7.
Hexanuclear oxo titanium(IV) siloxo carboxylate complexes with the general formula [Ti6O6(OSi(CH3)3)6(OOCR)6] (R = But (1), CH2But (2), C(CH3)2Et (3)) were synthesized in quantitative yield, by the reaction of Ti(OSiMe3)4 with the appropriate organic acid. Crystal structure determination revealed that molecules of 13 are composed of [Ti6-(μ3-O)6] cores stabilized by six synsyn carboxylato bridges and six terminal siloxide ligands. Each metal atom is surrounded by six oxo atoms, capping the triangular faces of the distorted octahedron. Spectral characterization (IR, NMR) of 13 revealed a significant non-equivalence of the carboxylate group interactions, resulting from the asymmetry of the Ti-μ-OOC bonds of the synsyn bridges. The thermal stability of the studied compounds was determined from TGA/DTA analysis.  相似文献   

8.
The enthalpy of the reaction: Pt(PPh3)2 (CH2CH2)(cryst.) + C(CN)2C(CN)2 (g) → Pt(PPh3)2 {C(CN)2C(CN)2}(cryst.) + CH2 CH2 (g) has been determined as ΔH298=?155.8±8.0 kJ·mol?1, from solution calorimetry. The interpretation, that the platinumethylene bond is much weaker than the platinumtetracyanoethylene bond, is contrary to conclusions drawn recently from electron emission spectroscopic studies, but in agreement with available structural data.  相似文献   

9.
UV irradiation of [Et4N] [V(CO)6] in the presence of the tripod ligands (L) MeC(CH2PPh2)3 (cp3) and P(CH2CH2PPh2)3 (pp3) yields [Et4N] [V(CO)5L], cis-[Et4N] [V(CO)4L] and mer-[Et4N] [V(CO)3L] (where the meridional configuration for L = cp3 is uncertain). Except for [Et4N] [V(CO)5cp3], all these species were isolated. The complexes are characterized by their IR, 31P and 51V NMR spectra.  相似文献   

10.
The microwave spectrum of trimethyl silyl isocyanate has been investigated in the region 26.5–40 GHz. The spectrum belonging to the ground vibrational state is characteristic of a symmetric top indicating that the equilibrium configuration of the SiNCO chain is either linear or very nearly so. The ground state B0 value is 1203.83 MHz which is consistent with the structure observed for SiH3NCO. The ground state transitions are accompanied by many vibrational satellites belonging to the lowest bending mode whose frequency was estimated to be 64 ± 15 cm−1. These results are consistent with electron diffraction results from which the SiNC angle is deduced to be ≈ 150°.  相似文献   

11.
A new 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P21/n with a=8.042(2) Å, b=20.004(4) Å, c=10.103(2) Å, and β=90.42(3)°. The anionic [B7O10(OH)3]n2n layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H3N(CH2)6NH3]2+ cations are located.  相似文献   

12.
The [Ni(DDM)2(NO3)2(H2O)2] complex (DDM is 4,4-diaminodiphenylmethane [CH2(C6H4NH2)2]) is synthesized, and its structure is determined. The crystals are triclinic, space group P , a = 5.846(1) ?, b = 9.450(2) ?, c = 13.390(3) ?, α = 105.63(3)°, β = 98.13(3)°, γ = 105.84(3)°, V = 666.6(2) ?3, ρcalcd = 1.553 g/cm3, Z = 2. The Ni(II) ion (in the inversion center) is bound to a distorted octahedral array formed by the nitrogen atoms of the primary amino groups of the DDM molecules and the oxygen atoms of the monodentate nitrato groups and water molecules (Ni(1)-N(3) 2.119(2) ?, Ni(1)-O(1) 2.122(2) ?, Ni(1)-O(w) 2.047(2) ?, angles at the Ni atoms vary in the 85.08(9)°–94.92(9)° interval). The structure contains supramolecular metallacycles formed by the O(w)-H…N(2) hydrogen bonds between the coordinated H2O molecules and the terminal amino groups of DDM. The metallacycles are joined by the Ni2+ ions into infinite chains running in the [111] direction. Original Russian Text ? Yu.V. Kokunov, V.V. Kovalev, Yu.E. Gorbunova, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 11, pp. 1838–1843.  相似文献   

13.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

14.
Mechanisms of RN3 (R=CH3, CH3CH2, (CH3)2CH, (CH3)3C) dissociations are proposed based on CAS, MP2 and B3LYP methods. The energy gaps between the ground-state reactants RN3 and the intersystem crossing (ISC) points are only a little lower than respective potential energy barriers of the spin-allowed reactions, 1RN3 → 1RN + 1N2. The ISC point, therefore, is considered as a transition state of the spin-forbidden reactions, 1RN3 → 3RN + 1N2. The methods of IRC and topological analysis of electron density are used to explain and predict the thermal dissociation pathways of the reactions studied.  相似文献   

15.
This article presents the continuation of the work on the development of technical equations of state for linear and cyclic siloxanes already documented in this journal. The fluids considered herewith are octamethyltrisiloxane (MDM, C8H24Si3O2), decamethyltetrasiloxane (MD2M, C10H30Si4O3), dodecamethylpentasiloxane (MD3M, C12H36Si5O4), dodecamethylcyclohexasiloxane (D6, C12H36Si6O6). The 12-parameter functional form proposed by Span and Wagner has been selected because of its positive characteristics. Siloxanes are produced in bulk quantities and are mostly utilized in the cosmetics industry and, mixed, as high-temperature heat transfer fluids. Furthermore, they are used as working fluids in high-temperature organic Rankine cycle power plants. The available property measurements are carefully evaluated and selected for the optimization of equation of state parameters. For some of the fluids, experimental values are scarce, therefore ad hoc estimation methods have been used to supply more information to the procedure for the optimization of the parameters of the equation of state. In addition, saturated liquid density and vapor pressure measurements are correlated with the equations proposed by Daubert and Wagner–Ambrose, respectively, to provide short, simple, and accurate equations for the computation of these properties. The recently developed isobaric ideal-gas heat capacity correlation for the selected siloxanes is included in the thermodynamic models. The performance of the newly developed equations of state is tested by comparison with experimental data and also with predictions calculated with the Peng–Robinson–Stryjek–Vera cubic EoS, as this model was adopted in previous technical studies. The new thermodynamic models perform significantly better than cubic equations of state. Ts and P  – vv diagrams for all the substances are also reported.  相似文献   

16.
[(CH2OH)3CNH3]2SiF6, (tris(hydroxymethyl)aminomethane)2SiF6 crystal, abbreviated as (TRIS)2SiF6 crystal, exhibits a solid-solid phase transition (PT) at 182 K. The phase transition is connected with reorientational motion of SiF62− and -CH2OH groups. The vibrational infrared spectra of powdered (TRIS)2SiF6 crystal in Nujol and Fluorolube mulls were studied in the wide range of temperatures, from 320 K to 133 K. A wide region of internal vibrations of the TRIS+ and SiF62− ions was investigated. Temperature changes of wavenumber, width, centre of gravity, and intensity of bands were analyzed to clarify the molecular mechanism of the phase transitions. Theoretical calculations were made based on density functional theory (DFT). The calculated normal vibrational modes of the molecules, their frequencies and intensities were compared with those obtained from experimental data.  相似文献   

17.
The observation of near infrared sharp line luminescence from solid V(urea)6(ClO4)3 and V(urea)6I3 at 80 and 5°K necessitates a reinterpretation of the electronic absorption spectra.  相似文献   

18.
Unequal intensities of the Λ-doublet components were observed in the CH(A2Δ-X2Π) emission following the multiphoton dissociation of (CH3)2CO, (CH3)2S and CH3NO2 by an ArF laser (193 nm). The power dependence of the emission intensity was estimated to be cubic (3.1±0.2) when the laser power was below ≈ 8×1017 photons cm?2 pulse?1. The Λ-doublet populations depended on the rotational quantum number N′ and the preferred level changed at N′ = 20. A similar behavior was observed for the CD(A2Δ) from (CD3)2CO. Rotational distributions show bimodal behavior, having a hump around N′ = 13 in CH(A2Δ) and N′ = 11 in CD(A2Δ). These trends indicate that the CH(A2Δ) is produced through multiple processes where stepwise mechanisms are operative via either CH2 or CH3, or both radicals as intermediates.  相似文献   

19.
Matrix isolation has been combined with infrared spectroscopy to study the reaction chemistry of CrCl2O2 with (CH3)2O and (CH3)2CO. Very similar results were obtained with twin jet and room temperature merged jet deposition, indicating that the initial product forms on the surface of the matrix during deposition, not in the deposition lines prior to matrix condensation. The initial product in both systems was identified as the 1:1 complex between the two reagents, with a structure in which the oxygen atom of the base donates electron density to the Cr center. A number of perturbed vibrational modes of both subunits were observed; for the bases, these modes were vibrations involving the oxygen atom. Hg arc irradiation of the CrCl2O2·O(CH3)2 complex led to growth of a secondary product that is tentatively identified as Cl2CrO(OCH3)2. The CrCl2O2·OC(CH3)2 complex was not photosensitive, and no rearrangements were observed.  相似文献   

20.
The selective in situ synthesis of trans and cis(CH3CN)-[Ru(bpy)(CO)2 (CH3CN)2]2+ isomers from the same [Ru(CO)2 (CH3CN)3]22+ dimer precursor but using either an electrochemical-chemical or chemical-electrochemical process is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号