首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Desolvation of Ni(2)(4,4'-bipyridine)(3)(NO(3))(4).2CH(3)OH and Ni(2)(4,4'-bipyridine)(3)(NO(3))(4).2C(2)H(5)OH give flexible metal-organic porous structures M and E, respectively, which have the same stoichiometry, but subtly different structures. This study combines measurements of the thermodynamics and kinetics of carbon dioxide, methanol, and ethanol sorption on adsorbents M and E over a range of temperatures with adsorbent structural characterization at different adsorbate (guest) loadings. The adsorption kinetics for methanol and ethanol adsorption on porous structure E obey a linear driving force (LDF) mass transfer model for adsorption at low surface coverage. The corresponding adsorption kinetics for porous structure M follow a double exponential (DE) model, which is consistent with two different barriers for diffusion through the windows and along the pores in the structure. The former is a high-energy barrier due to the opening of the windows in the structure, required to allow adsorption to occur, while the latter is a lower-energy barrier for diffusion in the pore cavities. X-ray diffraction studies at various methanol and ethanol loadings showed that the host porous structures E and M underwent different scissoring motions, leading to an increase in unit cell volume with the space group remaining unchanged during adsorption. The results are discussed in terms of reversible adsorbate/adsorbent (host/guest) structural changes and the adsorption mechanism involving hydrogen-bonding interactions with specific surface sites for methanol and ethanol adsorption in relation to pore size and extent of filling. This paper contains the first evidence for individual kinetic barriers to diffusion through windows and pore cavities in flexible porous coordination polymer frameworks.  相似文献   

2.
The principles of pressure swing adsorption (PSA) for carbon dioxide capture are reviewed. Previous work on PSA, relevant modeling and experimental investigation for specifically carbon dioxide separation are also presented and significant findings highlighted. Simple rules for PSA process design based on analysis of the inherent properties of adsorbate-adsorbent systems encompassing equilibrium isotherm, adsorption kinetics, shape of breakthrough curves, screening and selection of adsorbent, bed porosity, adsorption time, purge to feed ratio, residence time, pressure equalization and rinse steps are provided to promote better understanding of the technology so that it gains wider acceptance in the future to address the global environmental concern, particularly in the removal of carbon dioxide as a greenhouse gas.  相似文献   

3.
Extracorporeal filter cartridges, filled with an activated carbon bead (ACB) adsorbent, have been used for removal of overdosed cancer drugs from the blood. Coatings on adsorbent matrices, poly(methyl methacrylate) (PMMA)/activated carbon bead and PMMA/chitosan/heparin/ACB composites, were tested to improve their biocompatibility and blood compatibility. PMMA coating on ACBs was accomplished in a straightforward manner using a PMMA solution in ethyl acetate. A one-step hybrid coating of ACBs with PMMA-anticoagulant heparin required the use of acetone and water co-solvents. Multilayer coatings with three components, PMMA, chitosan, and heparin, involved three steps: PMMA was first coated on ACBs; chitosan was then coated on the PMMA-coated surface; and finally, heparin was covalently attached to the chitosan coating. Surface morphologies were studied by scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the -SO(3)(-) group. Adsorption, of a chemotherapy drug (doxorubicin) from both water and phosphate-buffered saline, by the coated ACBs was examined. The adsorption isotherm curves were fitted using the Freundlich model. The current adsorption system might find potential applications in the removal of high-dose regional chemotherapy drugs while maintaining high efficiency, biocompatibility, and blood compatibility.  相似文献   

4.
In this work a facile hydrothermal route has been employed to prepare a multiwall carbon nanotube wrapped in a chelating resin. 8-Hydroxyquinoline and p-formaldehyde were used as monomer and linker for polymer synthesis. The prepared composite was employed as an efficient adsorbent for lead adsorption and preconcentration from various matrices. Effective parameters on lead adsorption have been optimized by central composite design. Results showed that equilibrium adsorption was obtained at pH = 4, with a shacking time of 15 min and adsorbent dosage of 15 mg. Isotherm study showed that the sorbent has adsorbent capacity of 250 mg g?1; moreover, the process followed a Langmuir isotherm model. Thermodynamic investigation confirmed that lead adsorption is spontaneous, as well as follows endothermic path.  相似文献   

5.
Supercritical carbon dioxide is an efficient solvent for adsorptive separations because it can potentially be used as both the carrier solvent for adsorption and the desorbent for regeneration. Recent results have demonstrated an anomalous peak or "hump" in the adsorption isotherm near the bulk critical point when the adsorption isotherm is plotted as a function of bulk density. This work presents new data for the adsorption and desorption of carbon dioxide in the near-critical region on a crystalline, well-structured adsorbent (NaY zeolite). The results indicate a strong affinity for CO(2) as well as a significant hump near the critical point. The lattice model previously developed by Aranovich and Donohue is applied to analyze the adsorption.  相似文献   

6.
7.
The ethanol/water separation challenge highlights the adsorption capacity/selectivity trade-off problem. We show that the target guest can serve as a gating component of the host to block the undesired guest, giving molecular sieving effect for the adsorbent possessing large pores. Two hydrophilic/water-stable metal azolate frameworks were designed to compare the effects of gating and pore-opening flexibility. Large amounts (up to 28.7 mmol g−1) of ethanol with fuel-grade (99.5 %+) and even higher purities (99.9999 %+) can be produced in a single adsorption process from not only 95 : 5 but also 10 : 90 ethanol/water mixtures. More interestingly, the pore-opening adsorbent possessing large pore apertures showed not only high water adsorption capacity but also exceptionally high water/ethanol selectivity characteristic of molecular sieving. Computational simulations demonstrated the critical role of guest-anchoring aperture for the guest-dominated gating process.  相似文献   

8.
The subtle flexibility of the framework material Co(bpy)1.5(NO3)2.(guest) (bpy = 4,4'-bipyridine) (1.(guest)) is demonstrated quantitatively through in situ single-crystal X-ray diffraction measurements of guest desorption and sorption processes. Variable temperature unit cell determinations were employed to monitor the uptake and release of guest species, and full structural determinations have been carried out for the as-grown ethanol-loaded framework (1.(EtOH)), for the empty host framework, and for each of the five introduced guests (methanol: 1.(MeOH), acetone: 1.(ACN), acetonitrile: 1.(MeCN), tetrahydrofuran:1.(THF), dichloromethane: 1.(DCM)). The framework consists of interdigitated two-dimensional bilayers of cobalt(II) centers bridged by bpy ligands, with one-dimensional pores that account for approximately 20% of the total volume. The sorption of guest species of varying size and shape has revealed the framework's ability to adapt to different guests through a range of different framework flexibilities.  相似文献   

9.
Elution dynamics of the adsorption of methanol vapors on humidified active carbon is studied. Elution curves are obtained for the various lengths of adsorbent layer. The isotherm of adsorption of methanol–water vapor mixtures on active carbon is calculated, using the model of the equilibrium adsorption layer.  相似文献   

10.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

11.
The vapor absorbency of the series of alcohols methanol, ethanol, 1‐propanol, 1‐butanol, and 1‐pentanol was characterized on the single‐crystal adsorbents [MII2(bza)4(pyz)]n (bza=benzoate, pyz=pyrazine, M=Rh ( 1 ), Cu ( 2 )). The crystal structures of all the alcohol inclusions were determined by single‐crystal X‐ray crystallography at 90 K. The crystal‐phase transition induced by guest adsorption occurred in the inclusion crystals except for 1‐propanol. A hydrogen‐bonded dimer of adsorbed alcohol was found in the methanol‐ and ethanol‐inclusion crystals, which is similar to a previous observation in 2 ?2EtOH (S. Takamizawa, T. Saito, T. Akatsuka, E. Nakata, Inorg. Chem. 2005 , 44, 1421–1424). In contrast, an isolated monomer was present in the channel for 1‐propanol, 1‐butanol, and 1‐pentanol inclusions. All adsorbed alcohols were stabilized by hydrophilic and/or hydrophobic interactions between host and guest. From the combined results of microscopic determination (crystal structure) and macroscopic observation (gas‐adsorption property), the observed transition induced by gas adsorption is explained by stepwise inclusion into the individual cavities, which is called the “step‐loading effect.” Alcohol/water separation was attempted by a pervaporation technique with microcrystals of 2 dispersed in a poly(dimethylsiloxane) membrane. In the alcohol/water separation, the membrane showed effective separation ability and gave separation factors (alcohol/water) of 5.6 and 4.7 for methanol and ethanol at room temperature, respectively.  相似文献   

12.
The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C(18) and the non-endcapped Resolve-C(18) are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C(18) and Symmetry-C(18), respectively. This is explained by the effect of the mobile phase composition on the structure of the C(18)-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.  相似文献   

13.
Almond shell agricultural biomass was used to prepare high surface area activated carbon using potassium hydroxide as activating agent. The activated carbon (AC) was characterized using X-Ray photoelectron spectroscopy, X-Ray diffraction, Thermogravimetric and differential thermal analyses, Scanning electron microscopy, Fourier transform infrared, Brunauer–Emmett–Teller surface area and Raman spectroscopy. The AC was found to have a high surface area of 2054 m2 g?1. The influence of various key parameters was evaluated on the adsorption process including contact time, adsorbent dose and solution pH. Isotherm data were modeled using Langmuir and Freundlich models. Langmuir isotherm model presented the best fit to experimental data suggesting homogeneous distribution of adsorption sites. The adsorbent demonstrated high monolayer adsorption capacity of 833.33 and 625.0 mg/g for Methylene Blue and Crystal Violet, respectively. The efficiency of the adsorption process was linked to the micro-mesoporous structure and to the availability of the surface adsorption sites. Response surface methodology was used to optimize the removal efficiency from aqueous solution.  相似文献   

14.
The adsorption of carbon dioxide and methane on silicalite pellets packed on a fixed bed has been studied. Equilibrium and kinetic measurements of the adsorption of carbon dioxide and methane have been performed, and a binary adsorption isotherm for carbon dioxide/methane mixtures has been obtained. A model based on the LDF approximation for the mass transfer has been used to describe the breakthrough curves obtained experimentally. A PSA cycle has been proposed for obtaining methane with purity higher than 98% from carbon dioxide/methane mixtures containing 38% and 50% methane, and its performance has been simulated using the proposed model. The simulation results show that silicalite can be a suitable adsorbent for employment in a PSA separation process for carbon dioxide removal from coalseam and landfill gases.  相似文献   

15.
Molecular inclusion by hydroxy host systems (9-hydroxy-9-(1-propynyl)fluorene+guest and 1,1-bis(2,4-dimethylphenyl)-2-butyn-1-ol+guest) has been investigated by using an empirical potential function. Water, methanol, ethanol, andn-propanol have been employed as guest molecules and their relative stabilities are considered. Alcohol is found to be more suitable than water as a guest molecule in the two tested host molecules. It is also found that the nonbonded interaction is the most important factor in determining the relative stabilities of hydroxy host systems.  相似文献   

16.
Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were chemically modified with 3-aminopyrazole (MWCNTs-f) and applied as an efficient adsorbent to mercury and arsenic adsorption from aqueous solutions. The adsorbents were characterized by FT-IR, EDX, FE-SEM, TGA, and BET. The effects of pH, adsorbent dose, and initial ions concentration on the adsorption efficiency and the optimum conditions were investigated by central composite design. The optimum conditions were obtained at pH 7.6–7.9, adsorbent dose 20 mg, and initial ions concentration 20 ppm. So the maximum adsorption efficiencies in these conditions were 80.5 and 72.4% for the removal of Hg(II) and As(III) by MWCNTs-f, respectively. The quadratic model was used for the analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Also, the pseudo-second-order model has been achieved from the adsorption kinetic studies. Furthermore, the experimental data were well fitted to the Langmuir isotherm and the maximum adsorption capacities obtained were 112 and 133 mg g?1 for the adsorption of Hg(II) and As(III) by MWCNTs-f, respectively. Moreover, a thermodynamic study revealed that the adsorption reactions were spontaneous and endothermic with the increase in randomness. In addition, a desorption study showed the favorable regeneration ability of MWCNTs-f even after three adsorption–desorption cycles. Therefore, the MWCNTs-f adsorbent has good potential for the removal of Hg(II) and As(III) pollutants from aqueous solutions.  相似文献   

17.
Amine-functionalized adsorbents have attracted increasing interest in recent years for heavy metal removal. In this study, diethylenetriamine (DETA) was successfully grafted (through a relatively simple solution reaction) onto poly(glycidyl methacrylate) (PGMA) microgranules to obtain an adsorbent (PGMA-DETA) with a very high content of amine groups and the PGMA-DETA adsorbent was examined for copper ion removal in a series of batch adsorption experiments. It was found that the PGMA-DETA adsorbent achieved excellent adsorption performance in copper ion removal and the adsorption was most effective at pH>3 in the pH range of 1-5 examined. X-ray photoelectron spectroscopy (XPS) revealed that there were different types of amine sites on the surfaces of the PGMA-DETA adsorbent but copper ion adsorption was mainly through forming surface complexes with the neutral amine groups on the adsorbent, resulting in better adsorption performance at a higher solution pH value. The adsorption isotherm data best obeyed the Langmuir-Freundlich model and the adsorption capacity reached 1.5 mmol/g in the case of pH 5 studied. The adsorption process was fast (with adsorption equilibrium time less than 1-4 h) and closely followed the pseudo-second-order kinetic model. Desorption of copper ions from the PGMA-DETA adsorbent was most effectively achieved in a 0.1 M dilute nitric acid solution, with 80% of the desorption being completed within the first 1 min. Consecutive adsorption-desorption experiments showed that the PGMA-DETA adsorbent can be reused almost without any loss in the adsorption capacity.  相似文献   

18.
Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an adsorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and N2-BET surface area. The results showed that PAA can disperse and protect Fe0 nanorods from oxidation. The adsorption characteristics of trace Cr(VI) onto adsorbent have been examined at different initial Cr(VI) concentrations with pH 5. Batch adsorption studies show that the removal percentage of adsorbent for the removal of trace Cr(VI) is strongly dependent on the initial Cr(VI) concentrations. Langmuir and Freundlich isotherm models were used to analyze the experiment data. The adsorption of trace Cr(VI) by adsorbent is well modeled by the Langmuir isotherm and the maximum adsorption capacity of Cr(VI) is calculated as 123.95 mg/g which is very closed to the experiment results. Intraparticle diffusion study shows that the intraparticle diffusion of adsorbent is not the sole rate-controlling step. The negative value of Gibbs free energy change, ΔGo, indicated that the process of Cr(VI) onto adsorbent was spontaneous. This work has demonstrated that chitosan-iron nanowires in porous anodic alumina as an adsorbent has promising potential for heavy metal removal at trace level.  相似文献   

19.
Experimental data on the equilibrium adsorption of sulfur hexafluoride, methane, carbon dioxide, and benzene on carbon adsorbents of different porosity obtained in a wide pressure range at 298–408 K were analyzed. The adsorption volumes, surface areas, and sizes of slit-shaped pores of the carbons were determined using several independent methods. A method for determination of the adsorption volume from the experimental isotherm of excessive adsorption of gases and the total content equation was proposed. The resulting values are similar to the adsorption volumes calculated from the data for vapors. A new method for the calculation of the adsorbent surface area is described. The method is based on the dependence of the adsorption volume of adsorbent pores on the effective size of adsorbate molecules. A possibility to determine the average size of narrow slit-shaped carbon pores from the difference of the initial heats of adsorption of the gas under study on the carbon black and porous carbon adsorbent is considered. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2219–2227, October, 2005.  相似文献   

20.
Molecular inclusion by the new amide host molecule (TMB) has been reconsidered by calculating the crystal stabilization energies for the guest molecules in the TMB + guest system from the simple intermolecular potential functions of Caillet and Claverie. Water, ethylene glycol, methanol, and ethanol have been employed as guest molecules and their relative stabilities have been considered. Water has been found to be the most suitable guest molecule in the TMB + guest system. It also has been found that the guest host interaction is the most important contributor in determining the relative stabilities of the guest molecules in the TMB + guest system, but the guest guest interaction is very important, too. Moreover, the electrostatic interaction has been found to be the most important contributor to the total interaction energy in the TMB + guest system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号