首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural frequencies are important dynamic characteristics of a structure. Therefore, the exact solution pertaining to free vibration of stepped circular plate elastically restrained against rotation, translation, and internal elastic ring support resting on an arbitrary variable elastic foundation using Green Function is presented in this paper. Thus, an accurate and direct modeling technique is introduced for modeling stepped circular plate on an arbitrary variable elastic foundation with arbitrary boundary conditions and internal elastic ring support. The effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are assessed. Finally, some numerical examples are shown in order to present the efficiency and simplicity of the Green Function in the new formulation.  相似文献   

2.
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method ( GFEM ), boundary element method (BEM) and element free Galerkin method (EFGM), and is a truly meshless method possessing wide prospects in engineeringapplications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.  相似文献   

3.
Static and free vibration analyses of straight and circular beams on elastic foundation are investigated. The Timoshenko beam theory is adopted in the derivation of the governing equation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method. The static and free vibration analyses of beams on elastic foundation are analyzed through various examples.  相似文献   

4.
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.  相似文献   

5.
In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of boundary integrals. This means that the implementation of the method is simple. Numerical experiments show that the iterative method gives accurate results and converges very fast.  相似文献   

6.
A scheme is developed for analysing the interaction between a foundation and a nonlinear rock and soil medium, in which the foundation is considered as a linear elastic body and a typical boundary integral equation method (BIEM) is employed. On the basis of taking the nonlinear properties of the medium into account, a perturbation BIEM is developed. The fundamental equations for the nonlinear coupling analysis are formulated, and typical problems are solved and discussed by the present method.  相似文献   

7.
Two fundamental solutions for bending problem of Reissner's plates on two-parameter foundation are derived by means of Fourier integral transformation of generalized function in this paper. On the basis of virtual work principles, three boundar integral equations which fit for arbitrary shapes, lods and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods. Project supported by the P.H.D. Foundation of National Education Committee of China  相似文献   

8.
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-ofvariables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.  相似文献   

9.
A meshless approach to analysis of arbitrary Kirchhoff plates by the local boundary integral equation(LBIE) method is presented. The method combines the advantageous features of, all the three methods: the Galerkin finite element method (GFEM), the boundary element method (BEM) and the element-free Galerkin method (EFGM). It is a truly meshless method, which means that the discretization is independent of geometric subdivision into elements or cells, but is only based on a set of nodes (ordered or scattered) over a domain in question. It involves only boundary integration, however, over a local boundary centered at the node in question; It poses no difficulties in satisfying the essential boundary conditions while leading to banded and sparse system matrices using the moving least square (MLS) approximations. It is shown that high accuracy can be achieved for arbitrary geometries for clamped and simply-supported edge conditions. The method is found to be simple, efficient, and attractive. Project supported by the National Science Foundation of China (No. 19972019).  相似文献   

10.
A boundary integral representation of plane biharmonic function is established rigorously by the method of unanalytical continuation in the present paper. In this representation there are two boundary functions and four constants which bear a one to one correspondence to biharmonic functions. Therefore the set of boundary integral equations with indirect unknowns based on this representation is equivalent to the original differential equation formulation.  相似文献   

11.
This paper deals with the determination of temperature distribution and thermal deflection function of a thin circular plate with the stated conditions. The transient heat conduction equation is solved by using Marchi-Zgrablich transform and Laplace transform simultaneously and the results of temperature distribution and thermal deflection function are obtained in terms of infinite series of Bessel function and it is solved for special case by using Mathcad 2007 software and represented graphically by using Microsoft excel 2007.  相似文献   

12.
针对等厚度薄板的弯曲问题,研究人员已给出了基于不同数值算法的经典数值解。针对变厚度薄板弯曲问题的解答较少,且以有限元数值模拟计算为主,计算耗时较大。本文基于广义积分变换原理建立了求解变厚度等效系统的广义积分变换算法,分析了线性和二次变化的变厚度板在多种边界条件下的弯曲问题,利用文献已发表结果同本文建立的广义积分变换解进行验证。计算结果表明,本文建立的基于广义积分变换的变厚度板弯曲求解方法具有较高准确性。同时,通过参数化分析手段,分别利用广义积分变换方法和有限元数值模拟方法讨论了不同边界约束和长宽比等条件对中心点处挠度的影响,计算结果具有较好的一致性,证明本文建立的广义积分变换方法可用于求解变厚度板弯曲问题,且具有较高的准确性。  相似文献   

13.
In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

14.
提出了基于预埋压力传感器的量化测试方法,研究了螺栓松动边界对纤维增强复合薄板振动特性的影响。首先,自主设计并开发了带有预埋压力传感器的螺栓松动边界下复合薄板的振动测试系统,并详细介绍了系统各个部件的组成和功能;然后,归纳出一套合理、规范的松动边界下复合薄板的振动测试流程,并对HF10碳纤维/树脂复合薄板进行了实际测试。结果表明:随着螺栓松动程度的不断增加,复合薄板的固有频率逐渐降低,模态振型的节线位置也发生了不同程度的变化,但其阻尼结果呈现先增大后减小的趋势;而共振和非共振响应呈现先减小后增大的趋势。  相似文献   

15.
The method of double Fourier transform was employed in the analysis of the semi-infinite elastic foundation with vertical load.And an integral representations for the displacements of the semi-infinite elastic foundation was presented.The analytical solution of steady vibration of an elastic rectangle plate with four free edges on the semi-infinite elastic foundation was also given by combining the analytical solution of the elastic rectangle plate with the integral representation for displacements of the semi- infinite elastic foundation.Some computational results and the analysis on the influence of parameters were presented.  相似文献   

16.
A new numerical method—Green quasifunction is proposed.The idea of Green quasifunction method is clarified in detail by considering a vibration problem of simply-supported thin polygonic plates on Pasternak foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the vibration problem of simply-supported thin plates on Pasternak foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation,a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome.Finally,natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.  相似文献   

17.
In this paper, a simulation method called the differential transform method (DTM) is employed to predict the vibration of an Euler–Bernoulli and Timoshenko beam (pipeline) resting on an elastic soil. The DTM is introduced briefly. DTM can easily be applied to linear or nonlinear problems and reduces the required computational effort. With this method exact solutions may be obtained without any need for cumbersome calculations and it is a useful tool for analytical and numerical solutions. To clarify and illustrate the features and capabilities of the presented method, various problems have been solved by using the technique and solutions have been compared with those obtained in the literature.  相似文献   

18.
基于一阶剪切变形理论和移动最小二乘近似研究Winkler弹性地基上加肋功能梯度板的固有频率。假设功能梯度板的材料性质沿厚度方向按幂函数连续变化,基于物理中面和移动最小二乘近似分别推导功能梯度板和肋条的动能和势能,再通过引入位移协调条件,建立板和肋条节点参数转换关系,叠加两者的总能量,然后利用Hamilton原理推导加肋功能梯度板自由振动控制方程。采用完全转换法施加边界条件。通过将本文的计算结果与有限元以及文献的结果对比,验证方法的收敛性以及准确性。  相似文献   

19.
主动隔振下固支薄板基础振动抑制的参数多目标优化   总被引:1,自引:0,他引:1  
考虑动力设备-隔振器-薄板基础为复合主动隔振体系,并将薄板视为固支形式;以传递力作用在薄板基础上某点导纳为中间变量,在传递力、导纳、薄板振动峰值位移及峰值点距离影响因素分析的基础上,进行了系统耦联参数的多目标优化研究。优化算法采用较新的强度Pareto进化算法(SPEA2),该算法具有参数设置少、收敛速度快、寻优能力强及Pareto最优解分布均匀等优点。目标函数考虑为薄板振动的位移峰值及峰值点间的距离,目的是在有效控制薄板振动的同时,尽可能地使薄板趋于单峰值点振动,这对于板上附属操作设备及工作人员是有利的;最后,在最优参数的基础上对隔振器的安装位置进行讨论研究。数值计算结果表明,本文方法可有效地计算出隔振系统的最优参数,并为工业建筑及其他工程振动的最优隔振设计提供新思路。  相似文献   

20.
外界载荷作用下复合材料薄板的弯曲行为是工程重点关注的问题之一。针对各向同性和正交各向异性的薄板弯曲问题,研究人员已给出了经典数值解。由于计算的复杂性,针对各向异性薄板弯曲问题的解答较少。本文从薄板弯曲问题的控制方程出发,建立符合该问题的辅助特征方程,并确定相应的特征值和特征函数。利用广义积分变换的思想,建立了求解非正交铺层条件下各向异性薄板弯曲问题的数值算法,给出了各向异性薄板弯曲的精确解。与其他文献结果比较发现,该方法具有较好的收敛性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号