首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel yield function representing the overall plastic deformation in a single crystal is developed using the concept of optimization. Based on the principle of maximum dissipation during a plastic deformation, the problem of single crystal plasticity is first considered as a constrained optimization problem in which constraints are yield functions for slip systems. To overcome the singularity that usually arises in solving the above problem, a mathematical technique is used to replace the above constrained optimization problem with an equivalent problem which has only one constraint. This single constraint optimization problem, the so-called combined constraints crystal plasticity (CCCP) model, is implemented into a finite element code and the results of modeling the uniaxial tensions of the single crystal copper along different crystallographic directions and also hydroforming of aluminum tubes proved the capability of the proposed CCCP model in accurately predicting the deformation in polycrystalline materials.  相似文献   

2.
We are primarily concerned in this paper with the problem of plasticity. The solution of the problem of stress-increment for plasticity can be put into extremely compact form by famous Dirac matrices and Pauli matrices of quantum electrodynamics.  相似文献   

3.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

4.
An unprecedented dual avoidance–arrival problem is addressed for uncertain mechanical systems. The concerned system uncertainty is (possibly fast) time-varying but within an unknown bound. The objective is to design a control to simultaneously guarantee two seemingly opposite system performance: avoidance (with respect to a region) and arrival (with respect to another region). This is formulated as an approximate constraint-following control problem, in which formulation, the desired constraint is creatively divided into two categories as the avoidance constraint and the arrival constraint. An adaptive robust control is then put forward under the consideration of the system uncertainty. It is proved that, with the proposed control input, the avoidance constraint is completely followed and the arrival constraint is closely followed; hence, the dual avoidance–arrival problem is carried out.  相似文献   

5.
There are problems in linear elasticity theory whose corresponding deformations, usually associated with singular stress fields, are open to question because they are not one-to-one and predict self-intersection. Recently, a theory has been advanced to handle such situations, which consists in minimizing the quadratic energy functional of linear elasticity subject to the constraint of local injectivity. In particular, the Jacobian of the deformation gradient is required to be not less than an arbitrarily small positive quantity, and, thus, the local orientation is preserved. Here, this theory is applied to the classical Lekhnitskii problem of an elastic aelotropic circular disk which is loaded on its boundary by a uniform radial pressure. Without the injectivity constraint, this classical linear problem has a unique solution. This example, with the injectivity constraint, already has been considered in previous works, but radial symmetry was assumed in order to reduce the problem from 2D to 1D. Here, making use of an interior penalty formulation, a numerical scheme is implemented that solves a full 2D problem. Remarkably, it is shown that there are values of the material moduli for which the minimal potential energy solution is no longer symmetric, producing a strong azimuthal shear and nominally a 180° rotation of an internal central core of the disk. Although the elastic strain energy is quadratic and convex, the strongly nonlinear character of the constraint allows for bifurcation instabilities. We gratefully acknowledge the partial support of the Minnesota Supercomputing Institute and the Italian “Ministero per l’Università e la Ricerca Scientifica” under the program PRIN 2005 “Affidabilità di elementi in vetro strutturale: indagini teoriche e sperimentali sulla risposta termo-meccanica del materiale e di strutture trasparenti di tipo innovativo”. R.F. gratefully acknowledges the Department of Civil and Environmental Engineering at the Politecnico di Bari, Italy, for their kind hospitality and support during his visit of 2006. We appreciate the helpful comments and suggestions of Paolo Podio-Guidugli on an earlier draft of this work.  相似文献   

6.
 We derive the Euler-Lagrange equations for nonlinearly elastic rods with self-contact. The excluded-volume constraint is formulated in terms of an upper bound on the global curvature of the centre line. This condition is shown to guarantee the global injectivity of the deformation of the elastic rod. Topological constraints such as a prescribed knot and link class to model knotting and supercoiling phenomena as observed, e.g., in DNA-molecules, are included by using the notion of isotopy and Gaussian linking number. The bound on the global curvature as a nonsmooth side condition requires the use of Clarke's generalized gradients to obtain the explicit structure of the contact forces, which appear naturally as Lagrange multipliers in the Euler-Lagrange equations. Transversality conditions are discussed and higher regularity for the strains, moments, the centre line and the directors is shown. (Accepted December 20, 2002) Published online April 8, 2003 Communicated by S. S. Antman  相似文献   

7.
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.  相似文献   

8.
This paper describes a modified finite element method (MFEM) for determining the static equilibrium shape of the capillary surface of a liquid with a prescribed volume constrained by rigid boundaries with arbitrary shapes. It is assumed that the liquid is in static equilibrium under the influence of surface tension, adhesion, and gravity forces. This problem can be solved by employing the conventional FEM; however, a major difficulty arises due to the presence of the volume (integral) constraint and usually requires the use of the Lagrange multiplier method, the sequential unconstrained minimization technique, or the augmented Lagrange multiplier method. With the MFEM, the space variables defining the equilibrium surfaces (or curves) are expanded in terms of parametric interpolation functions, which are designed such that the boundary conditions and the integral constraint equation are automatically satisfied during each iteration of a direct numerical search process. Hence, there is no need to include Lagrange multipliers and/or penalty factors and the problem can be treated more simply as one involving unconstrained optimization. This investigation indicates that the MFEM is more efficient and reliable than the other methods. Results are presented for several case study problems involving liquid solder drops. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.  相似文献   

10.
We present a theoretical and numerical study on the induction of adiabatic explosions by accelerated curved shocks in homogeneous explosives, and pay a special attention to critical conditions for initiation. We characterize the first stage of the decomposition process, or induction, as an initial-value problem. During induction, the reaction progress-variable remains small; the induction time is given by the runaway of the dependent variables and corresponds to a logarithmic singularity in theirs material distributions. We express these distributions as first-order expansions in the progress variable about the shock. Then, the framework of our procedure is the formal Cauchy problem for quasi-linear hyperbolic sets of first-order differential equations, such as the balance laws for adiabatic flows of inviscid fluids considered in this study. When a shock front is used as data surface, the solution to the Cauchy problem yields the flow derivatives at the shock, then the induction time, as functions of the shock normal velocity and acceleration, and , and the shock total curvature C. We next derive a necessary condition for explosion as a constraint among , and C that ensures bounded values of the induction time. This criterion is akin to Semenov's, in the sense that the critical condition for explosion is that the heat-production rate must just exceed the heat-loss rate, here given by the volumetric expansion rate at the shock. The violation of the criterion defines a critical shock dynamics as a relationship among , and C that generates infinite induction times. Depending on the rear-boundary conditions, which determine the shock dynamics, this event can be interpreted as either a non-initiation, or the decoupling of the shock and of the flame front induced by the shock. We illustrate our approach by a simple solution to the problem of the initiation by impact of a noncompressible piston. From the continuity constraint in the material speed and acceleration at the contact surface of the piston and the explosive, we first derive the initial shock dynamics, and then rewrite the induction time and the initiation condition in terms of the piston speed, acceleration and curvature. We compare these theoretical predictions to those of our direct numerical simulations, and to numerical results obtained by other authors, in the case of impacts on a gaseous explosive. Received 19 October 1998 / Accepted 1 June 1999  相似文献   

11.
Exact mathematical analyses are presented for interface crack between dissimilar elastic-plastic materials. The deformation theory of plasticity is used. For two kinds of boundary conditions on crack faces: (1) traction free and (2) frictionless contact, the asymptotic separable solutions of the HRR type with full continuity are obtained, which exist only for special mixity parameterM p. For any assignedM p, the separable solutions of the HRR type which contained weak discontinued line are further obtained. All of our results not only satisfy the continuity of displacements and that of tractions on the interface, but also they are free of oscillatory singularity and interpenetration of crack faces.This investigation is supported by the National Natural Science Foundation of China  相似文献   

12.
13.
对FCC单晶体的率无关弹塑性力学响应的本构关系进行了数值模拟。用一个基于能量极值原理的数值计算方法来处理复杂的多面塑性问题,这种算法可以有效地模拟单晶体多滑移系的启动,在这一理论框架下,增量的应力应变关系可以从所构造的能量函数中推导出来。对于滑移系激活情况的判定则可转化为求解活动约束的非线性数学规划问题,通过对时间的离散,此问题又可细化为逐步二次规划问题,并采用有效集法来搜索启动滑移系,进而求得弹塑性本构关系,数值结果表明该方法具有稳定、收敛、可行的特点,在数值计算的基础上研究了单轴拉伸下晶体的不同取向对单晶体硬化程度和滑移系激活情况的影响。  相似文献   

14.
This paper presents a novel meshless Galerkin scheme for modeling incompressible slip Stokes flows in 2D. The boundary value problem is reformulated as boundary integral equations of the first kind which is then converted into an equivalent variational problem with constraint. We introduce a Lagrangian multiplier to incorporate the constraint and apply the moving least‐squares approximations to generate trial and test functions. In this boundary‐type meshless method, boundary conditions can be implemented exactly and system matrices are symmetric. Unlike the domain‐type method, this Galerkin scheme requires only a nodal structure on the bounding surface of a body for approximation of boundary unknowns. The convergence and abstract error estimates of this new approach are given. Numerical examples are also presented to show the efficiency of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Summary By applying the extension of the abstract theory of variational inequalities on convex sets (see Lions and Stampacchia[5]) we formulate and resolve numerically some classical non linear problems in the theory of beams, in which the solutions must satisfy certain inequalities which give preassigned conditions of monolateral constraint or plasticity.
Sommario In applicazione dell'estensione della teoria astratta delle disuguaglianze variazionali su insiemi convessi (cfr. Lions e Stampacchia[5]) sono formulati e numericamente risolti alcuni classici problemi non lineari della teoria delle travi, in cui le soluzioni debbono soddisfare a certe disuguaglianze, che traducono preassegnate condizioni di vincolo monolaterale o di plasticità.
  相似文献   

16.
This paper discusses the crack driving force in elastic–plastic materials, with particular emphasis on incremental plasticity. Using the configurational forces approach we identify a “plasticity influence term” that describes crack tip shielding or anti-shielding due to plastic deformation in the body. Standard constitutive models for finite strain as well as small strain incremental plasticity are used to obtain explicit expressions for the plasticity influence term in a two-dimensional setting. The total dissipation in the body is related to the near-tip and far-field J-integrals and the plasticity influence term. In the special case of deformation plasticity the plasticity influence term vanishes identically whereas for rigid plasticity and elastic-ideal plasticity the crack driving force vanishes. For steady state crack growth in incremental elastic–plastic materials, the plasticity influence term is equal to the negative of the plastic work per unit crack extension and the total dissipation in the body due to crack propagation and plastic deformation is determined by the far-field J-integral. For non-steady state crack growth, the plasticity influence term can be evaluated by post-processing after a conventional finite element stress analysis. Theory and computations are applied to a stationary crack in a C(T)-specimen to examine the effects of contained, uncontained and general yielding. A novel method is proposed for evaluating J-integrals under incremental plasticity conditions through the configurational body force. The incremental plasticity near-tip and far-field J-integrals are compared to conventional deformational plasticity and experimental J-integrals.  相似文献   

17.
We consider equilibria arising in a model for phase transitions which correspond to stable critical points of the constrained variational problem Here W is a double‐well potential and is a strictly convex domain. For ε small, this is closely related to the problem of partitioning Ω into two subdomains of fixed volume, where the subdomain boundaries correspond to the transitional boundary between phases. Motivated by this geometry problem, we show that in a strictly convex domain, stable critical points of the original variational problem have a connected, thin transition layer separating the two phases. This relates to work in [GM] where special geometries such as cylindrical domains were treated, and is analogous to the results in [CHo] which show that in a convex domain, stable critical points of the corresponding unconstrained problem are constant. The proof of connectivity employs tools from geometric measure theory including the co‐area formula and the isoperimetric inequality on manifolds. The thinness of the transition layer follows from a separate calculation establishing spatial decay of solutions to the pure phases. (Accepted July 15, 1996)  相似文献   

18.
Of concern is a cantilever beam resting on an elastic foundation and supporting a load at the free end. The beam is of rectangular cross section and of constant height but variable width. It is required to taper the beam for maximum strength. This means that the beam is to support a maximum vertical load W at the free end when the free end is given unit deflection. The constraint is that the weight of the beam should not exceed a given bound K. It is shown that the optimum taper should be so chosen that the curvature of the beam is constant. This yields the solution of the problem in terms of explicit formulas. For more general constraints, an inequality is found which gives upper and lower bounds for the maximum load W even though explicit formulas are not available.This paper was prepared under Research Grant DA-ARO-D-31-124-71-G17, U.S. Army Research Office (Durham).  相似文献   

19.
高斯原理给出了通过求函数极值、从可能运动中鉴别出真实运动的规则, 它可以使得多体系统动力学问题不需通过求解微分(代数)方程, 而是采用求解最小值的优化方法来解决, 从而提供了一种适用于优化算法的建模思路, 因此, 如何定义恰当的高斯拘束函数是动力学优化方法得以实现的前提. 对于理想系统而言, 约束对系统的作用可以通过约束方程来体现, 故高斯拘束可表达为系统质点加速度的函数, 系统的动力学问题因此可以描述为目标函数为高斯拘束函数、优化变量为质点加速度的约束最优化问题; 当系统中需要考虑干摩擦等非理想因素时, 部分相互作用不能被所定义的约束方程所涵盖而需要采用额外的物理规律来描述, 这种相互作用破坏了原有的针对理想系统的高斯拘束函数的极值特性. 基于变分类的高斯原理, 推导并证明了目标函数以理想约束力所表达的非理想系统的极值原理, 针对目前文献中用于非理想系统的高斯原理进行了讨论, 指出其实际为文中的极值原理在非理想约束力与理想约束力无明显关联时的一种特殊表达形式, 当非理想约束力与理想约束力有明显的函数关系(如库仑摩擦定律中滑动摩擦力与法向约束力间的线性关系)时, 该形式失效; 同时根据文中的极值原理, 得到了考虑库仑摩擦时非理想的多体系统动力学问题的优化模型. 例子中分析了优化模型及相应的线性互补性模型的关系, 分析发现在满足刚体滑动问题的唯一性条件下二者互为充分必要条件, 从而证明了文中优化模型的可靠性; 并采用优化计算方法进行了动力学模拟, 模拟结果显示了将高斯原理与优化算法相结合的可行性及有效性.   相似文献   

20.
The problem of the determination at any point P in a body of that pair of infinitesimal material line elements which suffers the maximum shear in a deformation has been solved [1]. Here that problem is revisited and a short proof, of geometrical type, of the result is presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号