首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haleem  M. R.  Al-Mansoori  M. H.  Jamaludin  M. Z.  Abdullah  F.  Din  N. Md 《Laser Physics》2011,21(2):419-422
We demonstrate an efficient double-pass L-band erbium-doped fiber amplifier (EDFA) incorporating chirped fiber Bragg grating (CFBG). The amplifier structure exploits the characteristics of CFBG to reflect the amplified signal back into the gain medium, filter out the recycled forward amplified spontaneous emission and block the residual 1480 nm pump power. The amplifier configuration has high gain and low noise figures as compared to double-pass EDFA using broadband mirror. The demonstrated amplifier has gain of more than 48 dB and low noise figure of less than 4 dB at low input signal power of −40 dBm.  相似文献   

2.
This paper reported an investigation of remotely pumped double pass L-band amplifier with dispersion compensation technique. The proposed design used chirped fiber Bragg grating (CFBG) to reflect the amplified signal back into the active medium, compensate the effect of fiber dispersion and block the recycled forward amplified spontaneous emission (ASE) and the residual 1480 nm pump power. The characterization of the design was done experimentally. The gain is 37.5 dB and noise figure is 4 dB with best BER of 10−52 is achieved when the EDF is placed 150 km away from the transmitter and 48 km before the receiver terminal.  相似文献   

3.
Double-pass short-wavelength band erbium-doped fiber amplifier (S-band EDFA) with enhanced gain and noise figure characteristics is demonstrated. It uses a broadband fiber Bragg grating (FBG) operating in conventional-band (C-band) region to reduce the C-band amplified spontaneous emission (ASE) in the amplifier system and thus increases the population inversion in the S-band region. The small signal gain is increased by about 2.7 dB for 1500 nm signal at pump power of 103 mW, compared with that of the conventional double-pass amplifier without the FBG. The corresponding noise figure is also improved by 0.5 dB.  相似文献   

4.
张峰  陈勇  简水生 《光学学报》2007,27(6):87-992
利用半导体光放大器(SOA)的增益饱和特性、自相位调制(SPM)效应和啁啾光纤光栅(CFBG)的滤波和啁啾特性共同作用实现了10 Gbit/s非归零码(NRZ)信号的时钟分量增强。经过该结构的非归零光谱的时钟分量增强后,其时钟数据抑制比提高了12.9 dB。时钟分量增强后的信号经基于受激布里渊效应(SBS)的时钟提取结构后实现了对非归零信号的全光时钟提取。这种新型非归零全光时钟提取结构具有对数据速率及数据格式透明,低抖动,不受码型效应的影响等优点。  相似文献   

5.
We propose a hybrid C-band erbium-doped fiber amplifier (EDFA) and L-band Raman fiber amplifier (RFA) using a single pump laser diode. The optimum pump sharing ratio to EDFA/RFA is 1/10 with a total pump power of 660 mW. Using multiple fiber Bragg gratings (FBGs) with various reflectivities at different positions along the dispersion compensation fiber, the optimum dispersion compensation and power equalization for C + L-band channels are simultaneously realized. With an input power of −20 dBm/ch, the signal power variation among the channels is reduced from 9.8 dB to less than ±0.5 dB. Two pump reflectors are introduced to increase the pumping efficiency.  相似文献   

6.
《Optics Communications》2004,229(1-6):249-252
A gain-clamped semiconductor optical amplifier (SOA) is used as an inline amplifier in combination with a distributed Raman fiber amplifier. The combined amplifier has 20 dB gain and a noise figure below 2.7 dB. The optical signal to noise ratios after five spans of 20 dB loss, equivalent to 5 × 80 km, are over 25.2 dB for eight-channel transmissions. In addition, the potentially compact amplifier shows negligible transients under dynamic add-drops.  相似文献   

7.
A PbS quantum dot coated (QD-coated) tapered fiber amplifier with a broad bandwidth is theoretically demonstrated. The QD layer is coated on the surface of a tapered fiber and is excited by the evanescent wave of a pump. An optical gain of 10.5 dB, with a 160-nm broad bandwidth of at 1530-nm center wavelength, is achieved. The gain efficiency is over 4 dB/cm. This QD-tapered fiber amplifier has a concentration control of the QDs, a lower insertion loss, and shows good suppression of amplified spontaneous emission (ASE), while its structure is also quite simple. Therefore, the proposed fiber amplifier has great potential in fiber-optic communication systems.  相似文献   

8.
An efficient erbium/ytterbium co-doped fiber amplifier (EYDFA) is demonstrated by using a dual-stage partial double pass structure with a band pass filter (BPF). The amplifier achieves the maximum small signal gain of 56 dB and the corresponding noise figure of 4.66 dB at 1536 nm with an input signal power and total pump power of ?50 dBm and 140 mW, respectively. Compared with a conventional single-stage amplifier, the maximum gain enhancement of 16.99 dB is obtained at 1544 nm with the corresponding noise figure is improved by 2 dB. The proposed amplifier structure only uses a single pump source with a partial double pass scheme to provide a high gain and dual-stage structure to provide the low noise figure.  相似文献   

9.
A co-axial dual core resonant leaky optical fiber (DCRLF) is designed for inherent gain equalization of S-band erbium doped fiber amplifier (EDFA). Resonance tail of leakage loss of the fiber into the S-band region is utilized to flatten the gain. We have numerically studied the effect of various design parameters and their fabrication tolerances on gain flattening. We show 23.5 dB flat gain with ± 0.9 dB ripple over 30 nm bandwidth (1490–1520 nm) using 120 mW pump. The study should be useful in designing optical fiber amplifiers for optical communication system employing wavelength division multiplexing.  相似文献   

10.
A simulation analysis of the impact that the nonlinear response of a semiconductor optical amplifier (SOA) has in a four-channel WDM pre-amplified transmission system is presented in the framework of the recently proposed extended-reach (40-km, 4 × 25 Gb/s) 100 Gb Ethernet link. Channel spacing values ranging from 200 to 800 GHz, and fiber losses between 0 and −20 dB are considered. A maximum power penalty of 4.5 dB is predicted for short fiber lengths and for the tightest channel plan. For short fiber lengths, the penalty drops by about 0.8 dB when moving from 400 to 800 GHz; whereas for long fiber lengths, the penalty increases by 0.2 dB, provided that an average dispersive fiber is utilized. The widely spaced channel plan then represents the best choice in terms of the analyzed physical effects to implement the next-generation 100 GbE link. Further, our numerical investigation includes a discrimination analysis that confirms cross-gain modulation as the main overall SOA nonlinear impairment in the analyzed architecture, and establishes ultra-fast carrier heating-induced FWM as responsible for the system performance difference observed as a function of channel spacing. The difference practically vanishes for fiber lengths above 30 km. Finally, the proposal of an equation that fits the simulated power spectrum density of the first-order four-wave mixing-generated product as a function of channel spacing is presented as an aid to validate our numerical results.  相似文献   

11.
An efficient erbium–ytterbium-doped fiber amplifier (EYDFA) is demonstrated by forward and backward pumping a 3 m erbium/ytterbium co-doped fibers (EYDF) in single- and double-pass configurations using a 20 mW pump. At the input signal wavelength of 1536 nm, the forward- and backward-pumped double-pass amplifiers achieved a maximum low-signal gain of 37.2 and 28.6 dB and a corresponding noise figure of 5.4 and 10.8 dB, respectively. Whereas, the forward- and backward-pumped single-pass amplifiers (at the same wavelength) achieved a maximum low-signal gain of 20.0 and 22.2 dB and a corresponding noise figure of 4.6 and 10.3 dB, respectively. The double-pass design offers an economical solution to high-efficiency and high-gain optical amplifiers.  相似文献   

12.
Liaw  Shien-Kuei  Li  Dong-Chang  Lee  Hsin-Che  Huang  Yi-Zhi  Shin  Chow-Shing  Lee  Yin-Wen 《Optics and Spectroscopy》2019,127(6):1057-1061
Optics and Spectroscopy - In this paper, a semiconductor optical amplifier (SOA) based 1064 nm fiber ring laser with 63.56 dB optical signal-to-noise ratio (OSNR) is demonstrated. The...  相似文献   

13.
The impact of the phase noise induced by self-phase modulation and intrachannel nonlinear effect for return-to-zero differential phase-shift keying (RZ-DPSK) in long haul 40 Gb/s transmission systems where dispersion is compensated by chirped fiber Bragg grating (CFBG) is analyzed and numerical evaluated, and it is compared with what is derived from the conventional DCF-based phase-modulated system. Our work also provides a clear physical picture of how the transmission performance is affected by CFBG, which is instructive for further research on CFBG compensated phase-modulated formats.  相似文献   

14.
A fast adjustable gain equalization filter for dense wavelength division multiplexing (DWDM) system is reported. The method is based on a single long period fiber grating (LPG) which is excited by means of flexural acoustic waves. The equalization of a typical erbium doped fiber amplifier (EDFA) gain spectrum with a gain flatness of <0.3 dB over a 32 nm bandwidth is demonstrated. The filter adjustment is obtained by choosing different acoustic loads applied to the acousto-optic modulator, which presents a switching time of ~17 μs. A maximum power penalty of 0.84 dB, relatively to the back-to-back signal, was achieved.  相似文献   

15.
Thulium doped fiber amplifier is a good candidate for S, and S+ band. This paper demonstrated a three pump pumping scheme for thulium doped fiber amplifier with 1050 nm co propagating pump and 1400 nm and 800 nm counter propagating pumps with a total pumping power 600 mW. This configuration yields up to 33 dB gain in 20 nm region from 1460 nm to 1480 nm, with noise figure <4 dB. To the knowledge of authors it is the highest gain achieved by thulium-doped amplifier in a single pass configuration with good power conversion efficiency.  相似文献   

16.
We demonstrate a multiwavelength 10 GHz pulse source using a dispersion-tuned actively mode-locked fiber ring laser incorporated with a semiconductor optical amplifier and an erbium-doped fiber amplifier. Simultaneous seven-wavelength operation of the laser is obtained. The side-mode suppression of all wavelengths is above 30 dB. Smooth wavelength tuning is achieved over more than 12 nm by changing the modulation frequency or the length of the optical delay line. Pulse characteristics are almost constant over the entire tuning span. Wavelength spacing can also be varied from 0.9 to 10 nm by adjusting the dispersion of the cavity. These experimental observations agree well with theoretical analyses.  相似文献   

17.
A dual-stage L-band erbium-doped fiber amplifier with a flat gain bandwidth over 36 nm is demonstrated using pump distribution technique. The pump power was distributed to two stages depending on the splitting ratio and the length of erbium-doped fiber that was used for this configuration. Both parameters are the key components for achieving a substantially flat gain response throughout the L-band region ranging from 1570 nm to 1605 nm. Although the input signal power was varied from ? 30 dBm to 0 dBm, gain of 17 dB with slight variations of less than 1.5 dB and a noise figure of less than 6.7 dB were achieved. All the results obtained show better performances when comparison was made with the conventional single-stage L-band optical amplifier.  相似文献   

18.
We present the novel all-fiber optical delay line that can be realized by exploiting the fundamental distributive reflection characteristics of a chirped fiber Bragg gratings (CFBG). With the assist of a strained CFBG and a designed fiber stretcher, the proposed delay line could perform the function (such as attainment of variable large enough optical delay without dispersion mismatch) of the conventional optical delay line within the optical fiber. While the strained CFBG produced 3.1 mm optical delay, the pair of CFBGs in the opposite direction can manage dispersion imbalance of the delay line. The use of the PZT-based fiber stretcher can enable depth scanning at a high repetition rate for real-time imaging. The performance of the delay element is demonstrated with measured experimental results. OCT system embedded with the all-fiber variable optical delay line showed the axial resolution of 100 μm and the dynamic range of 50 dB. The implemented system was used for the imaging of a biomedical sample, which proves the utility of the proposed delay element as a promising alternative of optical delay line.  相似文献   

19.
In this paper, two stage hybrid optical amplifier (HOA) composed of a single erbium doped fiber amplifier and Raman amplifier is proposed for dense wavelength division multiplexed (DWDM) system and investigate the impact of reduced channel spacing. The performance has been evaluated in the term of gain, gain flatness and noise figure. Also, using gain equalization technique, hybrid optical amplifier that has a gain flatness of 3 dB, and a noise figure of less than 7.4 dB is observed.  相似文献   

20.
In this paper the gain characteristics of two-pump fiber optical parametric amplifiers (FOPA) with two-section highly nonlinear fibers are analyzed numerically and the parameters of the fibers are optimized to reach broad and flat gain spectra using genetic algorithm. Different from the previous methods, here the space between two pump wavelengths and the parameter β4 of the fibers are included as a pivotal factor in the optimization. The numerical simulation shows that using two-section practical high nonlinear fibers, the amplifier may reach 110 nm bandwidth covering 1495–1605 nm with 10.5 dB average gain and gain ripple of 0.17 dB, when the total pump power is 1 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号