首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method of selective ion storage in a quadrupole ion trap is described. Broadband waveforms were applied to the endcaps of an ion trap to eject unwanted ions by resonance excitation, which enhanced the storage of selected target ions. A unique trapping field amplitude modulation technique allowed the use of waveforms with fewer frequency components. The requirements and methods of calculations for frequency-optimized wave-forms are discussed. Advantages of this method include the reduction of target ion loss that results from collision-activated dissociation. In other applications, equivalent performance, relative to methods that use nonmodulated trapping fields combined with waveforms that have a higher frequency density, was shown.  相似文献   

2.
The competition between ion dissociation and ion ejection during resonant excitation in a quadrupole ion trap is investigated. Ions of similar mass but with a range of critical energies for the onset of dissociation have been examined. The effects of the amplitude and duration of the resonant excitation, the well depth in which the ions are trapped, and the pressure and nature of the collision gas are explored. Once the onset of ion ejection is reached, the rate of ion ejection increases with increased amplitude of the resonant excitation signal. The rate of ejection decreases or stays constant as a function of the duration of the resonant excitation, depending upon the ion species being excited. Increasing the trapping well depth increases the relative amount of dissociation versus ejection as does increasing the pressure of the bath gas. Adding heavier bath gases lowers the onset of ion dissociation and raises the onset of ion ejection.  相似文献   

3.
The effects of storing ions at different values of the stability parameters az and qzwere studied in a quadrupole ion trap, using helium or argon as buffer. A region was localized near the boundaries of the stability diagram in which the ions experience an increase in their kinetic energy. This is reflected in the occurrence both of fragmentation due to collisional activation and of a certain extent of ion loss due to unstable trajectories. The results of this excitation, referred to as ‘boundary effects,’ depend on the specific qzat which the ion storage is performed and on the buffer gas used, and point to a simpler means of obtaining tandem mass spectra with the ion trap without the need to apply resonant tickle voltages between the end -cap electrodes.  相似文献   

4.
The quadrupole ion trap is commonly operated with a constant background pressure of an inert, low molecular weight buffer gas. This inclusion of a buffer gas has been shown to increase the sensitivity and mass resolution of the instrument. Research to gain an understanding of these effects, both experimental and through simulations, has typically assumed that it is optimal to maintain a constant buffer gas pressure throughout the entire experiment This article describes the effects of the pulsed introduction of buffer gas at strategic points within the analytical scan and evaluates those events during which the presence of buffer gas is critical. By incorporating a pulsed valve within the ion trap manifold, both the presence and pressure of the buffer gas can be controlled and varied during the individual steps of the scan. The presence of helium buffer gas just before the ion ejection and detection event showed a greater increase in intensity of the ion signal than at any other time in the analytical scan. In addition, this increase in intensity upon pulsed introduction of buffer gas prior to detection is constant over a wide range of pulsed valve open times (i.e., pressures), whereas the signal enhancement upon pulsed introduction of the buffer gas before ionization is observed only over a narrow range of pulsed valve open times.  相似文献   

5.
A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 × 10−3 Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5–10 ms at a bath gas pressure of 3.3 × 10−4 Torr and in 3–25 ms at 1.0 × 10−3 Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.  相似文献   

6.
Evidence of ion isomerization during isolation in an ion trap mass spectrometer is presented. An ion-molecule reaction that is specific for the tolyl cation was used to monitor the relative abundance of this species. In particular, it has been observed that ion isolation in the ion trap can impart sufficient energy to the tolyl cation to cause it to isomerize to a form (presumably either the benzyl or the tropylium ion) that is not reactive with the neutral reagent. These results are important to consider in ion trap applications involving ion species having activation barriers for isomerization lower than the activation barriers for dissociation.  相似文献   

7.
A modified Finnigan LCQ quadrupole ion trap has been used to determine the equilibrium constant of the complexation reaction of thiophenolate with 2,2,2-trifluoroethanol. The process is particularly useful as a thermometer reaction because it has an exceptionally large temperature dependence. Using literature values for the thermochemistry, an effective ion temperature of 310 ± 20 K is indicated for the ion trap. This value is much lower than some earlier estimates for ion traps, but is consistent with a recent theoretical analysis and some previous interpretations of experimental data. The results suggest that quadrupole ion traps are suitable for studying gas phase reactions under nearly thermal conditions.  相似文献   

8.
Chemical mass shifts were measured in a Paul ion trap operated in the mass-selective instability scan with resonance ejection using a custom-built instrument. These shifts, which can be as much as 2%, decrease with increasing endcap electrode separation owing to changes in the higher order contributions to the electric field. They also decrease with decreasing helium buffer gas pressure. Both of these effects are analogous to those found with boundary ejection. This suggests that the previously proposed chemical mass shift mechanism based on compound-dependent collisional modification of the ejection delay produced by field faults near the endcap electrode apertures holds true also for resonance ejection. The influence of the resonance frequency on chemical mass shifts was also investigated and it is shown that at certain working points (values of the Mathieu parameter q(z) and a(z)) non-linear resonances greatly reduce the ejection delay for all ions, regardless of their chemical structures, and thus reduce the magnitude of the chemical mass shift. Energetic collisions leading to dissociation can take place at an earlier stage during the ejection process in the mass analysis scan when using resonance ejection compared with boundary ejection. This leads to even larger chemical mass shifts of fragile ions in resonance ejection. Increasing the resonance voltage amplitude can enhance this effect. The chemical mass shifts of fragile ions increase with increase in the resonance voltage amplitude, whereas negligible changes occur for structurally stable ions.  相似文献   

9.
Methods to reduce mass shifts caused by space charge with mass‐selective axial ejection from a linear quadrupole ion trap are investigated. For axial ejection, dipole excitation is applied to excite ions at q ≈ 0.85. The trapping radiofrequency (rf) voltage is scanned to bring ions of different m/z values into resonance for excitation. In the fringing field at the quadrupole exit, excited ions gain axial kinetic energy, overcoming the trapping potential, and are ejected from the trap. Space charge causes the frequencies of ion oscillation to decrease. Thus, greater rf voltages are required to bring ions into resonance for excitation and ejection, and the ions shift to higher apparent masses in a mass spectrum. At the same time, the peaks broaden, lowering resolution. The effects of injection q value, ejection q value, excitation amplitude, quadrupole dc voltages applied to the electrodes, applying an rf voltage to the exit lens, and scan speed, on mass shifts have been studied experimentally. Most experiments were done with only ions of protonated reserpine (m/z 609.3 and its isotopic peaks) in the trap. Some experiments were done with ions of protonated reserpine and ions of m/z 622 in the trap. In general, the mass shifts are reduced with higher ejection q values, higher excitation amplitudes, with quadrupole dc applied, and at higher scan speeds. The application of quadrupole dc appears to increase the ion cloud temperature, which lowers mass shifts. Thus, a proper choice of operating conditions can reduce, but not eliminate, mass shifts caused by space charge. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A simple model provides a basis for evaluating the ion spatial distribution in a uadrupole (Paul) ion trap and its effect on the total potential (trap potential plus space charge 3 acting on ions in the trap. By combining the pseudopotential approximation introduced by Dehmelt 25 years ago with the assumption of thermal equilibrium (leading to a Boltzmann ion energy distribution), the resulting ion spatial distribution (for ions of a single mass-to-charge ratio) depends only on total number of ions, trap pseudopotential, and temperature. (The equilibrium assumption is justified by the high helium bath gas pressure at which analytical quadrupole ion traps are typically operated.) The electric potential generated by the ion space charge may be generated from Poisson’s equation subject to a Boltzmann ion energy distribution. However, because the ion distribution depends in turn on the total potential, solving for the potential and the ion distribution is no longer a simple boundary condition differential equation problem; an iterative procedure is required to obtain a self-consistent result. For the particularly convenient operating condition, (a z = -8qU/m? 0 2 Ω2, and q z =-4qV m? 0 2 Ω2, where U and V are direct current and radiofrequency (frequency, ω) voltages applied to the trap, m/q is ion mass-to-charge ratio, and ?0 is the radius of the ring electrode at the z=0 midplane], both the pseudopotential and the ion distribution become spherically symmetric. The resulting one-dimensional problem may be solved by a simple optimization procedure. The present model accounts qualitatively for the dependence of total potential and ion distribution on number of ions (higher ion density or lower temperature flattens the total potential and widens the spatial distribution of ions) and pseudopotential (higher pseudopotential increases ion density near the center of the trap without widening the ion spatial distribution).  相似文献   

11.
The formation and dissociation of dimer complexes consisting of a transition metal ion and two polyether ligands is examined in a quadrupole ion trap mass spectrometer. Reactions of three transition metals (Ni, Cu, Co) with three crown ethers and four acyclic ethers (glymes) are studied. Singly charged species are created from ion-molecule reactions between laser-desorbed monopositive metal ions and the neutral polyethers. Doubly charged complexes are generated from electrospray ionization of solutions containing metal salts and polyethers. For the singly charged complexes, the capability for dimer formation by the ethers is dependent on the number of available coordination sites on the ligand and its ability to fully coordinate the metal ion. For example, 18-crown-6 never forms dimer complexes, but 12-crown-4 readily forms dimers. For the more flexible acyclic ethers, the ligands that have four or more oxygen atoms do not form dimer complexes because the acyclic ligands have sufficient flexibility to wrap around the metal ion and prevent attachment of a second ligand. For the doubly charged complexes, dimers are observed for all of the crown ethers and glymes, thus showing no dependence on the flexibility or number of coordination sites of the polyether. The nonselectivity of dimer formation is attributed to the higher charge density of the doubly charged metal center, resulting in stronger coordination abilities. Collisionally activated dissociation is used to evaluate the structures of the metal-polyether dimer complexes. Radical fragmentation processes are observed for some of the singly charged dimer complexes because these pathways allow the monopositive metal ion to attain a more favorable 2 + oxidation state. These radical losses are observed for the dimer complexes but not for the monomer complexes because the dimer structures have two independent ligands, a feature that enhances the coordination geometry of the complex and allows more flexibility for the rearrangements necessary for loss of radical species. Dissociation of the doubly charged complexes generated by electrospray ionization does not result in losses of radical neutrals because the metal ions already exist in favorable 2+ oxidation states.  相似文献   

12.
The electric fields responsible for mass-selective axial ejection (MSAE) of ions trapped in a linear quadrupole ion trap have been studied using a combination of analytic theory and computer modeling. Axial ejection occurs as a consequence of the trapped ions' radial motion, which is characterized by extrema that are phase-synchronous with the local RF potential. As a result, the net axial electric field experienced by ions in the fringe region, over one RF cycle, is positive. This axial field depends strongly on both the axial and radial ion coordinates. The superposition of a repulsive potential applied to an exit lens with the diminishing quadrupole potential in the fringing region near the end of a quadrupole rod array can give rise to an approximately conical surface on which the net axial force experienced by an ion, averaged over one RF cycle, is zero. This conical surface has been named the cone of reflection because it divides the regions of ion reflection and ion ejection. Once an ion penetrates this surface, it feels a strong net positive axial force and is accelerated toward the exit lens. As a consequence of the strong dependence of the axial field on radial displacement, trapped thermalized ions can be ejected axially from a linear ion trap in a mass-selective way when their radial amplitude is increased through a resonant response to an auxiliary signal.  相似文献   

13.
By using a modified ion trap mass spectrometer, resolution in excess of 30,000 (FWHM) at m I z 502 is demonstrated. The method of increasing resolution in the ion trap mass spectrometer operated in the mass-selective instability mode depends on decreasing the rate of scanning the primary radio frequency amplitude as well as using resonance ejection at the appropriate frequency and amplitude. A theoretical basis for the method is introduced.  相似文献   

14.
A two-dimensional quadrupole ion trap mass spectrometer   总被引:8,自引:0,他引:8  
The use of a linear or two-dimensional (2-D) quadrupole ion trap as a high performance mass spectrometer is demonstrated. Mass analysis is performed by ejecting ions out a slot in one of the rods using the mass selective instability mode of operation. Resonance ejection and excitation are utilized to enhance mass analysis and to allow isolation and activation of ions for MS(n) capability. Improved trapping efficiency and increased ion capacity are observed relative to a three-dimensional (3-D) ion trap with similar mass range. Mass resolution comparable to 3-D traps is readily achieved, including high resolution at slower scan rates, although adequate mechanical tolerance of the trap structure is a requirement. Additional advantages of 2-D over 3-D ion traps are also discussed and demonstrated.  相似文献   

15.
In this work, we design, by means of a non‐neutral plasma method, a linear trapping model for large ion clouds, which will become the core of an atomic clock. We first obtain the geometry and electromagnetic characteristics of the ion trap. We then perform a systematic analysis describing the main parameters of the ion cloud such as size, secular frequency, and ion number per unit length of temperature. The most appropriate operation point of the ion trap in a set of these specific parameters is evaluated, and a thorough discussion is performed about how minor perturbations introduced in these parameters affect, in a nonlinear response, the performance of the trapping system in sensibility, heating, and radiofrequency potential.  相似文献   

16.
In the normal operation of quadrupole ion trap mass spectrometers, approximately half of the trapped ions are ejected through the source endcap during a mass-selective instability scan. This reduces the sensitivity of the instrument by approximately 50%. In this preliminary study, a circuit was constructed that produced a dipolar DC offset on the axial modulation waveform to recover this lost ion current. A variable (0 to 10 V DC), positive and negative offset was applied to the source and detector endcap, respectively. This DC offset axially displaced the ion cloud toward the detector endcap increasing the probability of detection. Several compounds, including 11 pesticides, were evaluated. Sensitivity enhancements ranged from 13 to 97% (theoretical 100%). No spectral resolution problems were observed; however, a compound-dependent mass discrimination was observed in several cases. This mass discrimination problem is currently under investigation.  相似文献   

17.
In electrospray ionization (ESI) quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry, certain fragment ions (e.g. acylium ions) generated either during the ion transportation process (in the source interface region) or in the ion trap are found to undergo ion--molecule reactions with ESI solvent molecules (water, acetonitrile and aliphatic alcohols) to form adduct species. These unexpected solvated fragment ions severely complicate the interpretation of mass spectrometic data. High-resolution accurate mass measurements are important in establishing the elemental compositions of these adduct species and preventing erroneous data interpretation.  相似文献   

18.
Ion/ion proton transfer reactions involving mutual storage of both ion polarities in a linear ion trap (LIT) that comprises part of a hybrid triple quadrupole/linear ion trap mass spectrometer have been effected. Mutual ion storage in the x- and y-dimensions arises from the normal operation of the oscillating quadrupole field of the quadrupole array, while storage in the z-dimension is enabled by applying unbalanced radio-frequency amplitudes to opposing sets of rods of the array. Efficient trapping (>90%) is achieved for thermalized ions over periods of several seconds. Reactions were demonstrated for multiply charged protein/peptide cations formed by electrospray with anions derived from glow discharge ionization of perfluoro(methyldecalin) (PMD) introduced from the side of the LIT rod array. Doubly and singly charged protein ions are readily formed via ion/ion reactions. The parameters that affect ion/ion reactions are discussed, including the degree of RF unbalance on the LIT rods, vacuum pressure, nature of the buffer gas, reaction time, anion abundance, and the low mass cutoff for ion/ion reaction. The present system has a demonstrated upper mass-to-charge ratio limit of at least 33,000. The system also has high flexibility with respect to defining MS(n) experiments involving both collision-induced dissociation (CID) and ion/ion reactions. Experiments are demonstrated involving beam-type CID in the pressurized collision quadrupole (Q2) followed by ion/ion reactions involving the product ions in the LIT. Ion parking experiments are also demonstrated using the mutual storage ion/ion reaction mode in the LIT, with a parking efficiency over 60%.  相似文献   

19.
An attempt has been made to compare the performance, design and operation of three simulators, ISIS, ITSIM and SIMION-3D, when applied to the calculation of ion trajectories in a quadrupole ion trap. For the simulation of the trajectory of a single ion in a collision-free system, the calculated spatial trajectory components, kinetic energies and secular frequencies from the three simulators were virtually identical. It is concluded that, despite the various approaches to electrode design, calculation of fields, integration methods and ion generation tactics, there is a remarkable degree of consistency among the products of the simulators when dealing with collision-free conditions. The results of the ion injection simulations under collisional conditions were indicative of the complexity that can be introduced into the simulations with little effort. Random effects such as collisions of ions with He buffer gas and accumulated calculation errors together with the different collision model settings and the different approaches to field calculation are thought to have contributed to the somewhat minor differences in trapping efficiency. SIMION is the simulator of choice for the simulation of ion trajectories in hybrid instruments and in custom-designed assemblies of electrodes; and ITSIM would appear to be the best choice on the basis of computational speed for running multiparticle simulations and user friendliness. Both ISIS and ITSIM are adept at providing detailed information of collision events. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision‐induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore‐containing compounds (desmethyl bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of ‘slow’ fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID‐like fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号