首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Fragmentation of the pentapeptide leucine enkephalin (YGGFL) is accomplished via higher-order resonances combined with simultaneous analysis of low-mass product ions. Two methods of achieving excitation are explored: (1) 0.5 ms resonant excitation at the omega and at Omega-omega secular frequencies of ion motion (where Omega is the radio-frequency (rf) drive frequency) in a manner similar to both pulsed q collision-induced dissociation (PQD) and high amplitude short time excitation (HASTE), and (2) 0.5 ms pulse of the omega or at Omega-omega excitation frequencies when the secular frequency of the ions is quickly swept across resonance conditions (pulsed q dynamic CID, PqDCID). In both methods of excitation, the rf amplitude on the ring electrode is rapidly decreased after excitation, therefore enabling analysis of low-mass product ions. Maximum fragmentation efficiencies of approximately 20% can be obtained with pulsed CID with both regular and high-order frequency excitation, while pulsed DCID offers maximum efficiencies of approximately 12%. All the excitation methods studied offer increased internal energy depositions when compared to conventional CID, as measured by the a4/b4 product ion ratios of leucine enkephalin. These ratios were as high as 13:1 for pulsed CID and 8:1 for PqDCID. Successful mass analysis of the low-mass ions is observed with both pulsed CID and PqDCID. The combined benefit of high internal energy deposition and wider dynamic mass range offers the possibility of increased sequence coverage and the identification of unique internal fragments or high-energy product ions which may provide complementary information to biological applications of conventional CID. This is the first report on deliberate fragmentation of precursor ions at a higher-order component of the ion secular frequency combined with a successful mass analysis of the low-mass ions through pulsed CID and PqDCID.  相似文献   

2.
A study of factors influencing the collision-induced dissociation (CID) rate of strongly bound diatomic ions effected via resonance excitation in a quadrupole ion trap is presented. From these studies, an approach to measuring the CID rates is described wherein product ion recovery is optimized and the effect of competitive processes (e.g., parent ion ejection and product ion reactions) on rate measurements are prevented from influencing rate measurements. Tantalum oxide ions (dissociation ENERGY = 8.2 eV), used as a model system, were formed via reactions of glow discharge generated Ta+ ions with residual gases in the ion trap. Neon (0.5 mtorr) was found to be a more favorable target gas for the dissociation of TaO+ than He and Ar, but collisional activation of TaO+ ions in neon during ion isolation by mass selective instability necessitated ion cooling prior to dissociation. A 25 ms delay time at qz = 0.2 allowed for kinetic cooling of stored TaO+ ions and enabled precise dissociation rate measurements to be made. CID of TaO+ was determined to be most efficient at qz = 0.67 (226 kHz for m/z 197). Suitable resonance excitation voltages and times ranged from 0.56 to 1.2 Vp-p and 1 to 68 ms, respectively. Under these conditions, measurement of rates approaching 80 s−1 for the dissociation of TaO+ could be made without significant complications associated with competing processes, such as ion ejection.  相似文献   

3.
The higher order fields present in the quadrupole ion trap may have beneficial effects such as increases in mass resolution in the mass-selective instability or resonance ejection modes of operation, but may also result in losses of ions due to nonlinear resonances. In this work, the reduction in ion intensities observed in the mass spectra of polyethylene glycol (PEG 1000) has been utilized to monitor the ion losses resulting from these higher order fields during the rf voltage scans in both the forward and reverse directions. Extensive ion losses were observed in reverse rf voltage scans at q z=0.64 (a z=0), which corresponds to octopole resonance at β z=1/2. The losses depended upon rf voltage scan rate and ion mass being greater for lower scan rates and lower masses. For ions of m/z 877, losses of up to 60% of the stored ions were observed at low scan rates (<1×104 Da/s), but were minimal at higher scan rates. Thus, it is possible to avoid such losses during reverse scans by scanning the region q z=0.64 at rates in excess of 4×104 Da/s. In forward rf voltage scans, ion storage was considerably more reliable, with significant losses observed only at very high scan rates near the region q z=0.78 (hexapole resonance at β z=2/3).  相似文献   

4.
Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD).  相似文献   

5.
Ion/ion proton transfer reactions involving mutual storage of both ion polarities in a linear ion trap (LIT) that comprises part of a hybrid triple quadrupole/linear ion trap mass spectrometer have been effected. Mutual ion storage in the x- and y-dimensions arises from the normal operation of the oscillating quadrupole field of the quadrupole array, while storage in the z-dimension is enabled by applying unbalanced radio-frequency amplitudes to opposing sets of rods of the array. Efficient trapping (>90%) is achieved for thermalized ions over periods of several seconds. Reactions were demonstrated for multiply charged protein/peptide cations formed by electrospray with anions derived from glow discharge ionization of perfluoro(methyldecalin) (PMD) introduced from the side of the LIT rod array. Doubly and singly charged protein ions are readily formed via ion/ion reactions. The parameters that affect ion/ion reactions are discussed, including the degree of RF unbalance on the LIT rods, vacuum pressure, nature of the buffer gas, reaction time, anion abundance, and the low mass cutoff for ion/ion reaction. The present system has a demonstrated upper mass-to-charge ratio limit of at least 33,000. The system also has high flexibility with respect to defining MS(n) experiments involving both collision-induced dissociation (CID) and ion/ion reactions. Experiments are demonstrated involving beam-type CID in the pressurized collision quadrupole (Q2) followed by ion/ion reactions involving the product ions in the LIT. Ion parking experiments are also demonstrated using the mutual storage ion/ion reaction mode in the LIT, with a parking efficiency over 60%.  相似文献   

6.
Collision induced dissociation (CID) in a quadrupole ion trap mass spectrometer using the conventional 30 ms activation time is compared with high amplitude short time excitation (HASTE) CID using 2 ms and 1 ms activation times. As a result of the shorter activation times, dissociation of the parent ions using the HASTE CID technique requires resonance excitation voltages greater than conventional CID. After activation, the rf trapping voltage is lowered to allow product ions below the low mass cut-off to be trapped. The HASTE CID spectra are notably different from those obtained using conventional CID and can include product ions below the low mass cut-off for the parent ions of interest. The MS/MS efficiencies of HASTE CID are not significantly different when compared with the conventional 30 ms CID. Similar results were obtained with a two-dimensional (linear) ion trap and a three-dimensional ion trap.  相似文献   

7.
Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.  相似文献   

8.
Modeling and experimental studies of quadrupole excitation of ions in linear quadrupole traps with added octopole fields are described. An approximate solution to the equations of motion of ions trapped in a quadrupole with added octopole and dodecapole fields, with quadrupole excitation and damping is given. The solutions give the steady-state or stationary amplitudes of oscillation with different excitation frequencies. Trajectory calculations of the oscillation amplitudes are also presented. The calculations show that there can be large changes in the amplitude of ion oscillation with small changes in excitation frequency, on both the low and high-frequency sides of a resonance. Results of experiments with quadrupole excitation of reserpine ions in linear quadrupole traps with 2.0%, 2.6%, and 4.0% added octopole fields are given. It is found that as the excitation frequency is changed, two resonances are generally observed, which are attributed to the motion in the x and y directions. The two resonances can have quite different intensities. Sudden jumps or sharp sided resonances are not observed, although in some cases asymmetric resonances are seen. The calculated frequency differences between the two resonances are in approximate agreement with the experiments.  相似文献   

9.
Using n‐butylbenzene as a test molecule, evidence is provided that fast, efficient or highly energetic collision‐induced dissociation (CID) can be achieved during the mass acquisition ramp of a commercially available quadrupole ion trap (QIT) mass spectrometer. The method of excitation is very similar to axial modulation for mass range extension except that lower amplitude waveforms are used to excite the precursor ions within the trap instead of ejecting them from the trap. ITSIM simulations verify that fast kinetic excitation followed by kinetic‐to‐internal energy transfer occurs on the rapid time‐scale required for the recapture and mass analysis of product ions during the mass acquisition ramp. CID efficiencies larger than 50% can be obtained using this new approach and ratios of Th 91/92 of n‐butylbenzene fragment ions as large as 9 are possible, albeit at significantly reduced efficiencies. These very large ratios indicate an internal energy above 7 eV for the precursor ions indicating that fragmentation of larger ions could also be possible using this new approach. The main benefits of the new method are that no extra time is required for fragmentation or cooling and that on‐resonance conditions are guaranteed because the ions' secular frequencies are swept through the fixed frequency of excitation. Also presented are the effects of experimental variables such as excitation frequency, excitation amplitude and scan rate on the CID efficiencies and energetics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We propose a tandem mass spectrometry method that combines electron-transfer dissociation (ETD) with simultaneous collision-induced dissociation (CID), termed ETD/CID. This technique can provide more complete sequence coverage of peptide ions, especially those at lower charge states. A selected precursor ion is isolated and subjected to ETD. At the same time, a residual precursor ion is subjected to activation via CID. The specific residual precursor ion selected for activation will depend upon the charge state and m/z of the ETD precursor ion. Residual precursor ions, which include unreacted precursor ions and charge-reduced precursor ions (either by electron-transfer or proton transfer), are often abundant remainders in ETD-only reactions. Preliminary results demonstrate that during an ETD/CID experiment, b, y, c, and z-type ions can be produced in a single experiment and displayed in a single mass spectrum. While some peptides, especially doubly protonated ones, do not fragment well by ETD, ETD/CID alleviates this problem by acting in at least one of three ways: (1) the number of ETD fragment ions are enhanced by CID of residual precursor ions, (2) both ETD and CID-derived fragments are produced, or (3) predominantly CID-derived fragments are produced with little or no improvement in ETD-derived fragment ions. Two interesting scenarios are presented that display the flexibility of the ETD/CID method. For example, smaller peptides that show little response to ETD are fragmented preferentially by CID during the ETD/CID experiment. Conversely, larger peptides with higher charge states are fragmented primarily via ETD. Hence, ETD/CID appears to rely upon the fundamental reactivity of the analyte cations to provide the best fragmentation without implementing any additional logic or MS/MS experiments. In addition to the ETD/CID experiments, we describe a novel dual source interface for providing front-end ETD capabilities on a linear ion trap mass spectrometer.  相似文献   

11.
Axial collision induced dissociation (CID) and high-pressure resonance CID were implemented and compared with normal low-pressure resonance CID in a miniature ion trap mass spectrometer to obtain more complete fragmentation spectra. Axial CID was realized simply by applying a potential to the discontinuous atmospheric pressure interface (DAPI) capillary without performing parent ion isolation before dissociation. High-pressure resonance CID employed a double-introduction pulse scan function, by means of which precursor ions isolated at low-pressure (<10−3 torr) were dissociated at high-pressure (0.1 torr-1 torr) with higher excitation energy, so that tandem MS of isolated precursor ions was achieved and extensive fragmentation was obtained. A simple peptide (Leu-enkephalin) and dye molecule (rhodamine B) ionized by ESI were used to investigate both methods and compare them with normal low-pressure resonance CID.  相似文献   

12.
This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to ~880 Å2. The duration and magnitude of the ion ejection pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described.  相似文献   

13.
Mosi AA  Reimer KJ  Eigendorf GK 《Talanta》1997,44(6):985-1001
GC/MS and GC/MS/MS in a quadrupole ion trap were used to analyze for anthraquinone, alkyl anthraquinones, benz[a]anthracene-7, 12-dione and 9-fluoranone in a sediment obtained from an aluminum smelter settling pond contaminated with polycyclic aromatic hydrocarbons. By standard GC/MS analysis many of these target compounds were either undetectable or their confirmation uncertain because of matrix interferences. Detection and identification were greatly improved by using GC/MS/MS. GC/MS/MS analyses were performed by selecting the molecular ion (M) of a target compound and fragmenting it via collision induced dissocation (CID) to yield product ions corresponding to loss of CO for unsubstituted compounds or CO plus CH(3) for alkylated compounds. The CID conditions were optimized using anthraquinone and 2-methylanthraquinone standards by varying the CID excitation energy and RF storage levels to yield optimum amounts of fragment ions. CID experiments were performed using both resonant and non-resonant wave forms. Although both excitation techniques gave comparable results for the removal of matrix interferences, non-resonant excitation provided more characteristic spectra for the alkylated anthraquinones. Monitoring of secondary fragmentation products, such as M-2CO, provided greater discrimination from matrix interferences than the use of primary fragmentation products, such as M-CO.  相似文献   

14.
A method is reported for evaluating ion trap mass analyzers by selection of operating conditions under which both boundary and resonance ejection peaks occur in a single mass scan. The choice of frequency and amplitude of the auxiliary waveform applied for resonance ejection can be such as to produce a resonance ejection mass spectrum with unit resolution or, under selected conditions, signals attributable to both boundary and resonance ejection in a single mass scan. The contrasting mass resolution associated with these two ejection processes is evident in these data. The co-occurrence of the two ejection phenomena is ascribed to the effects of higher-order fields; it is more marked in some rectilinear ion traps (RITs) than in other nominally identical devices, leading to the possibility of using it to compare individual mass analyzers in multiplexed instruments. The method is used to compare multiple ion traps driven by the same RF signal in a fully-multiplexed mass spectrometer, composed of parallel ion source/mass analyzer/detector channels each housed in one quadrant of a specialized vacuum chamber.  相似文献   

15.
A new method of selective ion storage in a quadrupole ion trap is described. Broadband waveforms were applied to the endcaps of an ion trap to eject unwanted ions by resonance excitation, which enhanced the storage of selected target ions. A unique trapping field amplitude modulation technique allowed the use of waveforms with fewer frequency components. The requirements and methods of calculations for frequency-optimized wave-forms are discussed. Advantages of this method include the reduction of target ion loss that results from collision-activated dissociation. In other applications, equivalent performance, relative to methods that use nonmodulated trapping fields combined with waveforms that have a higher frequency density, was shown.  相似文献   

16.
Headspace solid-phase microextraction combined with gas chromatography/ion trap tandem mass spectrometry (HS-SPME/GC/ITMS/MS) was used for the analysis of 12 halobenzenes from soil samples. For MS/MS optimisation, the experiments were performed by precursor ion selection and software controlled operations. Collision-induced dissociation (CID) can be achieved by two different approaches, resonant and non-resonant excitation modes. Different results were obtained using the two approaches, and the resonant excitation mode was chosen as the best for all halobenzenes. Parameters such as the CID excitation amplitude, excitation RF storage level and CID bandwidth frequency were optimised to maximise the formation of halobenzene product ions. A 100-microm polydimethylsiloxane fibre was used for the isolation and preconcentration of the analytes. The HS-SPME/GC/ITMS/MS method was applied to the analysis of halobenzenes in an agricultural soil sample. The halobenzenes were quantified by standard addition, which led to good reproducibility (RSD between 4.7 and 9.2%) and detection limits in the low pg/g range. The method was validated by comparing the results with those obtained in a European inter-laboratory exercise.  相似文献   

17.
We have systematically established the excitation frequency, amplitude, duration, and buffer gas pressure for optimal axialization efficiency and mass selectivity of quadrupolar excitation-collisional cooling for isolation of parent ions for collision-induced dissociation in Fourier transform ion cyclotron resonance mass spectrometry. For example, at high quadrupolar excitation amplitude, ion axialization efficiency and selectivity are optimal when the applied quadrupolar excitation frequency is lower than the unperturbed ion cyclotron frequency by up to several hundred hertz. Moreover, at high buffer gas pressure (10?6 Torr), quadrupolar excitation duration can be quite short because of efficient collisional cooling of the cyclotron motion produced by magnetron-to-cyclotron conversion. Efficiency, detected signal magnitude, and mass resolving power for collision-induced dissociation (CID) product ions are significantly enhanced by prior parent ion axialization. With this method, we use argon CID to show that C 94 + (m/z 1128) formed by Nd:YAG laser desorption-ionization behaves as a closed-cage structure.  相似文献   

18.
Collision induced dissociation (CID) combined with matrix assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) is described. In this approach, peptide ions are separated on the basis of mobility in a 15 cm drift cell. Following mobility separation, the ions exit the drift cell and enter a 5 cm vacuum interface with a high field region (up to 1000 V/cm) to undergo collisional activation. Ion transmission and ion kinetic energies in the interface are theoretically evaluated accounting for the pressure gradient, interface dimensions, and electric fields. Using this CID technique, we have successfully fragmented and sequenced a number of model peptide ions as well as peptide ions obtained by a tryptic digest. This instrument configuration allows for the simultaneous determination of peptide mass, peptide-ion sequence, and collision-cross section of MALDI-generated ions, providing information critical to the identification of unknown components in complex proteomic samples.  相似文献   

19.
This study describes the application of a two-frequency excitation waveform to the end-cap electrodes of a quadrupole ion trap (QIT) during the mass acquisition period to deliberately fragment selected precursor ions. This approach obviates the need for a discrete excitation period and guarantees on-resonant excitation conditions without any requirement for resonant tuning; it is therefore faster than the conventional approach to collision-induced dissociation (CID) in QITs. The molecular ion of n-butylbenzene is used as thermometer molecule to determine the energetics of the new excitation procedure. The excitation waveform, consisting of two closely spaced sinusoidal frequencies, has an interference pattern that displays nodes and crests in the time domain. The energetics (determined by the product ion ratios of 91/92 Th) and CID efficiencies are highly dependent on the excitation amplitude, the relative position of the excitation frequencies in the Mathieu stability diagram, and whether the ions come into resonance during a node or crest of the excitation waveform. Under highly energetic conditions, ratios of 91/92 as large as 15 can be obtained at concomitant CID efficiencies of 10%, indicating internal energies in excess of 10 eV at the time of fragmentation. These extremely high internal energies far exceed the energetics achievable using conventional on-resonance excitation in QITs, indicating that the collisional heating rate is very fast in the new approach. Under less energetic conditions CID efficiencies as high as 70% are possible, which compares favorably with results obtained by conventional on-resonance excitation. Correlation analyses are used to determine the conditions that simultaneously optimize energetic and efficient fragmentation conditions.  相似文献   

20.
Nonresonance excitation is a universal ion excitation and ejection method in which increased ion kinetic energy is achieved by the combination of an axial dc dipole and the rf trapping fields. The method does not require the applied excitation frequency to match with the secular frequency of the precursor ions to effect collision-induced dissociation (CID) for tandem mass spectrometry applications. Therefore, it is free of the effects of secular frequency changes caused by space-charge and simplifies the optimization of tandem mass spectrometry parameters when combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). Computer simulations show that in contrast to the resonance excitation process, the nonresonance excitation process is able to accelerate thermal ions to kinetic energies in excess of 40 eV in a few microseconds. Based on simulations, we expect that the rapid deposition of energy by this method may allow the study, in ion traps, of high energy decomposition channels of precursor ions with multiple decomposition channels. Furthermore, the method is able to simultaneously excite multiple precursor ions, for example, excite both analyte and its coeluting isotopically labeled internal standard for GC-MS/MS analysis. A GC-MS/MS analysis of 100 pg of n-butylbenzene is demonstrated with a signal-to-noise ratio of 3624, which is over an order of magnitude higher than the signal-to-noise ratio of 345 obtained by full scan gas chromatography-mass spectrometry. In addition, the nonresonance excitation method can be used as a low pass mass filter in the chemical ionization (CI) mode to eject undesired fragment ions that result from direct electron ionization. This new CI method, selected ejection chemical ionization, can produce a CI spectrum without contamination of sample fragment ions from electron ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号