首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
BACKGROUND: Sialic acid is a component of many tumor-associated oligosaccharide antigens. The repertoire of sialic acids presented by cells can be expanded to include unnatural variants by intercepting the sialic acid biosynthetic pathway with unnatural precursors. We explored whether unnatural cell surface sialosides produced by metabolism can act as neo-antigens and modulate the immunogenicity of cells. RESULTS: Immunization of rabbits with synthetic conjugates of an unnatural sialic acid bound to keyhole limpet hemocyanin produced significant titers of antibodies that were specific for the structurally altered sialic acid. The antibodies recognized cells that were fed the unnatural biosynthetic precursor, and were capable of directing complement-mediated lysis. CONCLUSIONS: Structural alteration of sialic acids replaces a tolerized self-antigen with an antigenic determinant. Incorporation of unnatural sialosides into cell surface glycoconjugates through biosynthetic means can alter the immunoreactivity of cells, providing new possibilities for tumor immunotherapy.  相似文献   

2.
Two different sialic acid containing glycopeptide (sialopeptide) libraries were synthesized using the portion mixing method and ladder synthesis. The libraries were attached via an IMP spacer and a photolabile linker to PEGA(1900) resin in order to facilitate rapid and unambiguous structural analysis of hits by MALDI-TOFMS. One library contained a lactamized sialic acid moiety at the N terminus of a pentapeptide, while a second library displayed a sialic acid residue at the center of a heptapeptide. The sialopeptide libraries were screened against the recombinant binding domain (SnD1) of a sialic acid binding Ig-like protein, sialoadhesin (Siglec-1). No ligands were identified from the lactamized sialic acid library, underscoring the importance of the carboxylic acid moiety for binding. Screening of the second gave few distinct hits (approximately 0.03% of library) with a high consensus. The high-affinity ligands contained, in most cases, a WG motif following the sialylated Thr. The strength of binding of selected ligands was determined by surface plasmon resonance. The best sialopeptide ligand, WLLT(Sa)WGT, exhibited micromolar affinity of SnD1; >10 times the affinity of SnD1 to 3'-sialyl lactose.  相似文献   

3.
The metabolic oligosaccharide engineering (MOE) strategy using unnatural sialic acids has recently enabled the visualization of the sialome in living systems. However, MOE only reports on global sialylation and dissected information regarding subsets of sialosides is missing. Described here is the synthesis and utilization of sialic acids modified with a sydnone reporter for the metabolic labeling of sialoconjugates. The positioning of the reporter on the sugar significantly altered its metabolic fate. Further in vitro enzymatic assays revealed that the 9‐modified neuraminic acid is preferentially accepted by the sialyltransferase ST6Gal‐I over ST3Gal‐IV, leading to the favored incorporation of the reporter into linkage‐specific α2,6‐N‐linked sialoproteins. This sydnone sugar presents the possibility of investigating the roles of specific sialosides.  相似文献   

4.
The siglec family of sialic acid binding proteins participates in diverse cell surface biology that includes regulation of immune cell signaling and the interaction of neuronal cells with glial cells. The weak intrinsic affinity of the natural sialoside ligands has hampered the development of synthetic ligand based probes needed to elucidate their roles in siglec function. In this report, we describe a glycan microarray comprising a library of 9-acyl-substituted sialic acids incorporated into sialosides containing the Neu5Acalpha2-3Gal and Neu5Acalpha-6Gal linkages commonly recognized by the siglecs. The array is demonstrated to exhibit utility for detecting 9-acyl substituents that increase the affinity of siglecs for their ligands. Substituents that increase affinity are anticipated to be useful for the design of high affinity ligand based probes of siglec function.  相似文献   

5.
The total synthesis of ganglioside GP3, which is found in the starfish Asterina pectinifera, has been accomplished through stereoselective and effective glycosylation reactions. The sialic acid embedded octasaccharide moiety of the target compound was constructed by [4+4] convergent coupling. A tetrasaccharyl donor and acceptor that contained internal sialic acid residues were synthesized with an orthogonally protected N‐Troc sialic acid donor as the key common synthetic unit, and they underwent highly stereoselective glycosidation. The resulting sialosides were subsequently transformed into reactive glycosyl acceptors. [4+4] coupling furnished the octasaccharide framework in 91 % yield as a single stereoisomer. Final conjugation of the octasaccharyl donor and glucosyl ceramide acceptor produced the protected target compound in high yield, which underwent global deprotection to successfully deliver ganglioside GP3.  相似文献   

6.
A library of α2-3- and α2-6-linked sialyl galactosides containing C9-modified sialic acids was synthesized from C6-modified mannose derivatives using an efficient one-pot three-enzyme system. These sialosides were used in a high-throughput sialidase substrate specificity assay to elucidate the importance of C9-OH in sialidase recognition.  相似文献   

7.
Divalent precision glycooligomers terminating in N‐acetylneuraminic acid (Neu5Ac) or 3′‐sialyllactose (3′‐SL) with varying linkers between scaffold and the glycan portions are synthesized via solid phase synthesis for co‐crystallization studies with the sialic acid‐binding major capsid protein VP1 of human Trichodysplasia spinulosa‐associated Polyomavirus. High‐resolution crystal structures of complexes demonstrate that the compounds bind to VP1 depending on the favorable combination of carbohydrate ligand and linker. It is found that artificial linkers can replace portions of natural carbohydrate linkers as long as they meet certain requirements such as size or flexibility to optimize contact area between ligand and receptor binding sites. The obtained results will influence the design of future high affinity ligands based on the structures presented here, and they can serve as a blueprint to develop multivalent glycooligomers as inhibitors of viral adhesion.  相似文献   

8.
A preparative scale synthesis of a dioxan sialic acid analog was achieved from d-mannose. The conformation and the acidic character of this dioxan derivative, closely related to sialic acid, provides a scaffold for drug design.  相似文献   

9.
The structure of sialic acid on living cells can be modulated by metabolism of unnatural biosynthetic precursors. Here we investigate the conversion of a panel of azide-functionalized mannosamine and glucosamine derivatives into cell-surface sialosides. A key tool in this study is the Staudinger ligation, a highly selective reaction between modified triarylphosphines and azides that produces an amide-linked product. A preliminary study of the mechanism of this reaction, and refined conditions for its in vivo execution, are reported. The reaction provided a means to label the glycoconjugate-bound azidosugars with biochemical probes. Finally, we demonstrate that the cell-surface Staudinger ligation is compatible with hydrazone formation from metabolically introduced ketones. These two strategies provide a means to selectively modify cell-surface glycans with exogenous probes.  相似文献   

10.
Influenza types A and B both cause serious disease in man; vaccines are in use but must be reformulated each year in response to antigenic variation and are frequently ineffective against new influenza variants. Influenza viruses are enveloped RNA viruses which contain two major surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA, EC 3.2.1.18). These proteins are essential for infection and offer potential targets for antiviral drug development. Based upon the knowledge of the most important steps of the whole interaction between virus and host cell, the main purpose of our research was to find a sialic acid analogue for increasing the affinity of the sialic acid cell receptor analogue to the principal binding site of HA. A series of sialic acid analogues were prepared and their structures were designed with the goal to have molecules able to saturate the HA receptor and thereby be potentially useful as anti-influenza drugs.  相似文献   

11.
AnN-acetylneuraminyl-α2,3(6)lactose-malate dehydrogenase (MDH-Lac-Neu5Ac) conjugate is prepared via an isothiocyanate conjugation method using ap-aminophenethylamino derivative of sialyllactose. The newly synthesized conjugate can be utilized as a reagent in a novel homogeneous lectin-based, enzyme-linked, competitive binding assay (1–3) for probing the specific carbohydrate structure and content of intact glycoproteins. The enzymatic activity of the MDH-Lac-Neu5Ac conjugate is shown to be significantly inhibited (35%) by sialic acid-binding lectin,Limax flavus agglutinin (LFA), and this inhibition is reversed by mucin, a glycoprotein possessing sialic acid terminals. The asialo form of mucin, however, binds weakly to LFA, yielding no substantial increase in the MDH-Lac-Neu5Ac activity at comparable glycoprotein concentrations. Use of the newly synthesized conjugate in conjunction with LFA or other lectins capable of binding sialic acid may provide a rapid and convenient way to detect the presence and relative amount of sialic acid terminal groups within intact glycoprotein structures.  相似文献   

12.
Sialic acid sugars that terminate cell‐surface glycans form the ligands for the sialic acid binding immunoglobulin‐like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross‐reactivity and led to the discovery of three selective Siglec‐5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec‐3 dampened the activation of Siglec‐3+ monocytic cells through the NF‐κB and IRF pathways.  相似文献   

13.
Infrared atmospheric pressure matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometry was applied to the study of siglec binding to oligosaccharide ligands. Peptides were designed to mimic the binding sites of three members of the siglec family: sialoadhesin, MAG and CD22. These peptides were tested for their ability to complex with their carbohydrate ligands 3'-sialyllactose (3'SL) and 6'-sialyllactose (6'SL). All peptides demonstrated the ability to bind to the carbohydrates, with the peptide representing sialoadhesin maintaining its binding specificity for 3'SL in preference to 6'SL. This technique can be used to study other protein-sugar interactions and can be expanded to create high-throughput screening techniques.  相似文献   

14.
唾液酸是一类酸性九碳糖,通过α-糖苷键的方式广泛分布于生物体系内糖缀合物和多聚唾液酸中而发挥着重要的生物学功能。如何有效地构建唾液酸α-糖苷键,合成天然的含有唾液酸的糖缀合物、多聚唾液酸及其衍生物,是糖化学研究的热点和难点。近年来,人们基于唾液酸的结构特点,一方面通过在C2位引入易离去的基因,发展了直接成苷的方法,显著提高成苷的产率;另一方面,通过对C1和C3位引入辅助基因,发展了间接成苷的方法,提高了成苷的α-选择性。本文主要从直接成苷和间接成苷两个方面对目前研究的唾液酸糖苷化的化学方法学进行综述。  相似文献   

15.
A library of 27 sialosides, including seventeen 2,3-linked and ten 2,6-linked glycans, has been prepared to construct a glycan array and used to profile the binding specificity of different influenza hemagglutinins (HA) subtypes, especially from the 2009 swine-originated H1N1 and seasonal influenza viruses. It was found that the HAs from the 2009 H1N1 and the seasonal Brisbane strain share similar binding profiles yet different binding affinities toward various α2,6 sialosides. Analysis of the binding profiles of different HA subtypes indicate that a minimum set of 5 oligosaccharides can be used to differentiate influenza H1, H3, H5, H7, and H9 subtypes. In addition, the glycan array was used to profile the binding pattern of different influenza viruses. It was found that most binding patterns of viruses and HA proteins are similar and that glycosylation at Asn27 is essential for receptor binding.  相似文献   

16.
Gold nanoparticles decorated with full‐length sialic acid terminated complex bi‐antennary N‐glycans, synthesized with glycans isolated from egg yolk, were used as a sensor for the detection of both recombinant hemagglutinin (HA) and whole influenza A virus particles of the H1N1 subtype. Nanoparticle aggregation was induced by interaction between the sialic acid termini of the glycans attached to gold and the multivalent sialic acid binding sites of HA. Both dynamic light scattering (DLS) and UV/Vis spectroscopy demonstrated the efficiency of the sensor, which could detect viral HA at nanomolar concentrations and revealed a linear relationship between the extent of nanoparticle aggregation and the concentration of HA. UV/Vis studies also showed that these nanoparticles can selectively detect an influenza A virus strain that preferentially binds sialic acid terminated glycans with α(2→6) linkages over a strain that prefers glycans with terminal α(2→3)‐linked sialic acids.  相似文献   

17.
Using model acidic glycans, we demonstrate the benefits of permethylation for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI/TOF-TOF) tandem mass spectrometry. With both the linear and branched structures, extensive cross-ring fragmentation product ions were generated, yielding valuable information on sugar linkages. Elimination of the negative charges commonly associated with sialylated structures through permethylation allowed their structural analysis in the positive ion mode. Extensive A- and X-type ions were observed for the linear structures, and slightly weaker signals for the branched sialylated structures. The diagnostic cross-ring fragments, permitting a distinction between alpha2-3 and alpha2-6 linkages of the sialic acid residues, were seen in abundance. Importantly, the cross-ring fragmentation with the branched structures provides adequate information to assign sialic acid residues, with a specific linkage, to a particular antenna.  相似文献   

18.
The branched pentasaccharide chain of ganglioside GM1 is a prominent cell surface ligand, for example, for cholera toxin or tumor growth-regulatory homodimeric galectins. This activity profile via protein recognition prompted us to examine the binding properties of peptides with this specificity. Our study provides insights into the mechanism of molecular interaction of this thus far unexplored size limit of the protein part. We used three pentadecapeptides in a combined approach of mass spectrometry, NMR spectroscopy and molecular modelling to analyze the ligand binding in solution. Availability of charged and hydrophobic functionalities affected the intramolecular flexibility of the peptides differently. Backfolding led to restrictions in two cases; the flexibility was not reduced significantly by association of the ligand in its energetically privileged conformations. Major contributions to the interaction energy arise from the sialic acid moiety contacting Arg/Lys residues and the N-terminal charge. Considerable involvement of stacking between the monovalent ligand and aromatic rings could not be detected. This carbohydrate binding strategy is similar to how an adenoviral fiber knob targets sialylated glycans. Rational manipulation for an affinity enhancement can now be directed to reduce the flexibility, exploit the potential for stacking and acquire the cross-linking capacity of the natural lectins by peptide attachment to a suitable scaffold.  相似文献   

19.
A modular approach was proposed for the preparation of chiral fluorescent molecular sensors, in which the fluorophore, scaffold, and chirogenic center can be connected by ethynyl groups, and these modules can easily be changed to other structures to optimize the molecular sensing performance of the sensors. This modular strategy to assembly chiral sensors alleviated the previous restrictions of chiral boronic acid sensors, for which the chirogenic center, fluorophore, and scaffold were integrated, thus it was difficult to optimize the molecular structures by chemical modifications. We demonstrated the potential of our new strategy by the preparation of a sensor with a larger scaffold. The photoinduced electron‐transfer (PET) effect is efficient even with a large distance between the N atom and the fluorophore core. Furthermore, the rarely reported donor‐PET (d‐PET) effect, which was previously limited to carbazole, was extended to phenothiazine fluorophore. The contrast ratio, that is, PET efficiency of the new d‐PET sensor, is increased to 8.0, compared to 2.0 with the previous carbazole d‐PET sensors. Furthermore, the ethynylated phenothiazine shows longer excitation wavelength (centered at 380 nm) and emission wavelength (492 nm), a large Stokes shift (142 nm), and high fluorescence quantum yield in aqueous solution (Φ=0.48 in MeOH/water, 3:1 v/v). Enantioselective recognition of tartaric acid was achieved with the new d‐PET boronic acid sensors. The enantioselectivity is up to 10 (ratio of the binding constants toward D ‐ and L ‐tartaric acid, kD/kL). A consecutive fluorescence enhancement/decrease was observed, thus we propose a transition of the binding stoichiometry from 1:1 to 1:2 as the analyte concentration increases, which is supported by mass spectra analysis. The boronic acid sensors were used for selective and sensitive recognition of disaccharides and glycosylated steroids (ginsenosides).  相似文献   

20.
《Analytical letters》2012,45(13):2317-2323
Abstract

The molecular imprinting technique was applied for the preparation of a polymer selective for sialic acid. To evaluate its binding ability the molecularly imprinted polymer obtained was used as a stationary phase in liquid chromatography. The polymer showed pH-dependent characteristics for binding: an optimum specificity to sialic acid at pH 8.1 and a higher affinity with group selectivity for cis-diol containing sugars at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号