首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.  相似文献   

2.
Carbon monoxide binding was studied in a collection of de novo heme proteins derived from combinatorial libraries of sequences designed to fold into 4-helix bundles. The design of the de novo sequences was based on the previously reported "binary code" strategy, in which the patterning of polar and nonpolar amino acids is specified explicitly, but the exact identities of the side chains are varied extensively.(1) The combinatorial mixture of amino acids included histidine and methionine, which ligate heme iron in natural proteins. However, no attempt was made to explicitly design a heme binding site. Nonetheless, as reported previously, approximately half of the binary code proteins bind heme.(2) This collection of novel heme proteins provides a unique opportunity for an unbiased assessment of the functional potentialities of heme proteins that have not been prejudiced either by explicit design or by evolutionary selection. To assess the capabilities of the de novo heme proteins to bind diatomic ligands, we measured the affinity for CO, the kinetics of CO binding and release, and the resonance Raman spectra of the CO complexes for eight de novo heme proteins from two combinatorial libraries. The CO binding affinities for all eight proteins were similar to that of myoglobin, with dissociation constants (K(d)) in the low nanomolar range. The CO association kinetics (k(on)) revealed that the heme environment in all eight of the de novo proteins is partially buried, and the resonance Raman studies indicated that the local environment around the bound CO is devoid of hydrogen-bonding groups. Overall, the CO binding properties of the de novo heme proteins span a narrow range of values near the center of the range observed for diverse families of natural heme proteins. The measured properties of the de novo heme proteins can be considered as a "default" range for CO binding in alpha-helical proteins that have neither been designed to bind heme or CO, nor subjected to genetic selections for heme or CO binding.  相似文献   

3.
In heme-based sensor proteins, ligand binding to heme in a sensor domain induces conformational changes that eventually lead to changes in enzymatic activity of an associated catalytic domain. The bacterial oxygen sensor FixL is the best-studied example of these proteins and displays marked differences in dynamic behavior with respect to model globin proteins. We report a mid-IR study of the configuration and ultrafast dynamics of CO in the distal heme pocket site of the sensor PAS domain FixLH, employing a recently developed method that provides a unique combination of high spectral resolution and range and high sensitivity. Anisotropy measurements indicate that CO rotates toward the heme plane upon dissociation, as is the case in globins. Remarkably, CO bound to the heme iron is tilted by ~30° with respect to the heme normal, which contrasts to the situation in myoglobin and in present FixLH-CO X-ray crystal structure models. This implies protein-environment-induced strain on the ligand, which is possibly at the origin of a very rapid docking-site population in a single conformation. Our observations likely explain the unusually low affinity of FixL for CO that is at the origin of the weak ligand discrimination between CO and O(2). Moreover, we observe orders of magnitude faster vibrational relaxation of dissociated CO in FixL than in globins, implying strong interactions of the ligand with the distal heme pocket environment. Finally, in the R220H FixLH mutant protein, where CO is H-bonded to a distal histidine, we demonstrate that the H-bond is maintained during photolysis. Comparison with extensively studied globin proteins unveils a surprisingly rich variety in both structural and dynamic properties of the interaction of a diatomic ligand with the ubiquitous b-type heme-proximal histidine system in different distal pockets.  相似文献   

4.
Human serum albumin (HSA) is the most abundant plasma protein in our bloodstream and serves as a transporter for small hydrophobic molecules such as fatty acids, bilirubin, and steroids. Hemin dissociated from methemoglobin is also bound within a narrow D-shaped cavity in subdomain IB of HSA. In terms of the general hydrophobicity of the alpha-helical pocket, HSA potentially has features similar to the heme-binding site of myoglobin (Mb) or hemoglobin (Hb). However, the reduced ferrous HSA-heme complex is immediately oxidized by O2, because HSA lacks the proximal histidine that enables the heme group to bind O2. In this paper, we report the introduction of a proximal histidine into the subdomain IB of HSA by site-directed mutagenesis to construct a tailor-made heme pocket (I142H/Y161L), which allows a reversible O2 binding to the prosthetic heme group. Laser flash photolysis experiments revealed that this artificial hemoprotein appears to have two different geometries of the axial-imidazole coordination, and these two species (I and II) showed rather low O2 binding affinities (P1/2O2 = 18 and 134 Torr) relative to those of Mb and Hb.  相似文献   

5.
Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes results in computer-simulated structures of heme complexes. The principal new feature peculiar to five and six coordination is a term that measures the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different structural possibilities. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The prosthetic group heme IX is wholly considered in our model. The calculations show clearly that certain conformations are much more favourable that others for fixing O2. From the O2 binding in haemoglobin, myoglobin and simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide O2-. Axial ligands are practically free-rotating. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.  相似文献   

6.
The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.  相似文献   

7.
The structures of Helicobacter pylori (HPC) and Penicillium vitale (PVC) catalases, each with two subunits in the crystal asymmetric unit, oxidized with peroxoacetic acid are reported at 1.8 and 1.7 A resolution, respectively. Despite the similar oxidation conditions employed, the iron-oxygen coordination length is 1.72 A for PVC, close to what is expected for a Fe=O double bond, and 1.80 and 1.85 A for HPC, suggestive of a Fe-O single bond. The structure and electronic configuration of the oxoferryl heme and immediate protein environment is investigated further by QM/MM density functional theory calculations. Four different active site electronic configurations are considered, Por*+-FeIV=O, Por*+-FeIV=O...HisH+, Por*+-FeIV-OH+ and Por-FeIV-OH (a protein radical is assumed in the latter configuration). The electronic structure of the primary oxidized species, Por*+-FeIV=O, differs qualitatively between HPC and PVC with an A2u-like porphyrin radical delocalized on the porphyrin in HPC and a mixed A1u-like "fluctuating" radical partially delocalized over the essential distal histidine, the porphyrin, and, to a lesser extent, the proximal tyrosine residue. This difference is rationalized in terms of HPC containing heme b and PVC containing heme d. It is concluded that compound I of PVC contains an oxoferryl Por*+-FeIV=O species with partial protonation of the distal histidine and compound I of HPC contains a hydroxoferryl Por-FeIV-OH with the second oxidation equivalent delocalized as a protein radical. The findings support the idea that there is a relation between radical migration to the protein and protonation of the oxoferryl bond in catalase.  相似文献   

8.
The structural and binding properties of diatomic molecules CO, NO and O2 to P450 heme were investigatedin two different models (labeled as M1 and M2) using density functional method at the B3LYP/6-31G(d)level. The e?ects of the serine residue near diatomic molecules XO were considered in the model M2. Theresults show that the serine residue near the heme enforced the binding of XO to heme. Frequency analysisindicates that the stretching vibrational frequency decreased as CO, NO, and O2 complex with heme.  相似文献   

9.
10.
Control of O2 versus CO binding in myoglobin (Mb) is tuned by a distal histidine residue through steric and H-bonding interactions. These interactions have been evaluated via Car-Parrinello DFT calculations, whose efficiency allows full quantum mechanical treatment of the 13 closest residues surrounding the heme. The small (8 degrees ) deviation of the Fe-C-O bond angle from linearity results from the steric influence of a distal valine residue and not the distal histidine. H-bond energies were evaluated by replacing the distal histidine with the non-H-bonding residue isoleucine. Binding energies for CO and O2 decreased by 0.8 and 4.1 kcal/mol for MbCO and MbO2, in good agreement with experimental H-bond estimates. Ligand discrimination is dominated by distal histidine H-bonding, which is also found to stabilize a metastable side-on isomer of MbO2 that may play a key role in MbO2 photodynamics.  相似文献   

11.
Du J  Perera R  Dawson JH 《Inorganic chemistry》2011,50(4):1242-1249
His93Gly sperm whale myoglobin (H93G Mb) has the proximal histidine ligand removed to create a cavity for exogenous ligand binding, providing a remarkably versatile template for the preparation of model heme complexes. The investigation of model heme adducts is an important way to probe the relationship between coordination structure and catalytic function in heme enzymes. In this study, we have successfully generated and spectroscopically characterized the H93G Mb cavity mutant ligated with less common alkylamine ligands (models for Lys or the amine group of N-terminal amino acids) in numerous heme iron states. All complexes have been characterized by electronic absorption and magnetic circular dichroism spectroscopy in comparison with data for parallel imidazole-ligated H93G heme iron moieties. This is the first systematic spectral study of models for alkylamine- or terminal amine-ligated heme centers in proteins. High-spin mono- and low-spin bis-amine-ligated ferrous and ferric H93G Mb adducts have been prepared together with mixed-ligand ferric heme complexes with alkylamine trans to nitrite or imidazole as heme coordination models for cytochrome c nitrite reductase or cytochrome f, respectively. Six-coordinate ferrous H93G Mb derivatives with CO, NO, and O(2) trans to the alkylamine have also been successfully formed, the latter for the first time. Finally, a novel high-valent ferryl species has been generated. The data in this study represent the first thorough investigation of the spectroscopic properties of alkylamine-ligated heme iron systems as models for naturally occurring heme proteins ligated by Lys or terminal amines.  相似文献   

12.
BACKGROUND: Specific interactions of metal ions with proteins are central to all life processes. The varied functions enabled by this cooperation are a consequence of strict control of the binding-site environment, particularly the number, type and geometry of metal-coordinating sidechains. Attempts to mimic these characteristics in the de novo design of metal-binding sites have thus far concentrated primarily on metal recruitment and not on affecting site function through systematic fine-tuning of the metal environment. RESULTS: A designed tetrahedral Zn(II)-binding site in a variant of the B1 domain of IgG-binding protein G has been expanded by introducing 'secondary ligands'. These interactions were engineered to stabilize the positions of the metal-coordinating histidine residues while retaining the desired coordination geometry. Each mutation increased the protein's affinity for metal, and combining two secondary ligands demonstrated that these enhancements are additive. These results mimic the effects of altering similar interactions observed in the native Zn(II)-binding site of carbonic anhydrase. In the B1 system, this enhanced affinity for metal is observed despite a substantial decrease in protein secondary structure. CONCLUSIONS: The intended effects of secondary ligand addition on metal affinity were observed in each mutant and demonstrated to be additive. Addition of metal also stabilized the protein's structure, partially offsetting the destabilizing effect of the mutations. These results represent a successful first attempt at designing an extended metal-binding site environment and illustrate the importance of including secondary interactions in the design of metal-binding sites.  相似文献   

13.
DFT calculations were carried out to study heme complexes with diatomic ligand (CO, NO, or O(2)) and trans-imidazole ligand. The optimized electronic ground states of CO, NO, and O(2) adducts are singlet, doublet, and open-shell singlet, respectively. For O(2) adduct, the open-shell singlet is slightly lower in energy than the close-shell singlet. However, important differences are found in optimized structures and vibrational frequencies. Particularly, the trans-imidazole-induced frequency up-shift of the Fe-O(O) stretching mode can be predicted only with the open-shell singlet as ground state. An analysis of normal modes confirms that the up-shifts in the bent (NO and O(2) ) adducts are mainly due to mixing of Fe-X(O) stretching mode with Fe-X-O bending coordinate. Our study of binding mechanism indicates that a secondary source of the upshifts is the diminished weakening of the Fe-X(O) bonds. The Fe-X(O) bond strengths are modulated by σ competition mechanism, which weakens the Fe-X(O) bond and σ-π cooperation mechanism, which only exists in the bent adducts and enforce the Fe-X(O) bond. -  相似文献   

14.
The H-NOX (Heme-Nitric oxide/OXygen binding) family of diatomic gas sensing hemoproteins has attracted great interest. Soluble guanylate cyclase (sGC), the well-characterized eukaryotic nitric oxide (NO) sensor is an H-NOX family member. When NO binds sGC at the ferrous histidine-ligated protoporphyrin-IX, the proximal histidine ligand dissociates, resulting in a 5-coordinate (5c) complex; formation of this 5c complex is viewed as necessary for activation of sGC. Characterization of other H-NOX family members has revealed that while most also bind NO in a 5c complex, some bind NO in a 6-coordinate (6c) complex or as a 5c/6c mixture. To gain insight into the heme pocket structural differences between 5c and 6c Fe(ii)-NO H-NOX complexes, we investigated the extended X-ray absorption fine structure (EXAFS) of the Fe(II)-unligated and Fe(II)-NO complexes of H-NOX domains from three species, Thermoanaerobacter tengcongensis, Shewanella woodyi, and Pseudoalteromonas atlantica. Although the Fe(II)-NO complex of TtH-NOX is formally 6c, we found the Fe-N(His) bond is substantially lengthened. Furthermore, although NO binds to SwH-NOX and PaH-NOX as a 5c complex, consistent with histidine dissociation, the EXAFS data do not exclude a very weakly associated histidine. Regardless of coordination number, upon NO-binding, the Fe-N(porphyrin) bond lengths in all three H-NOXs contract by ~0.07 ?. This study reveals that the overall heme structure of 5c and 6c Fe(II)-NO H-NOX complexes are substantially similar, suggesting that formal histidine dissociation may not be required to trigger NO/H-NOX signal transduction. The study has refined our understanding of the molecular mechanisms underlying NO/H-NOX signaling.  相似文献   

15.
Proton spin relaxation induced by the triplet ground state of O(2) in the zinc-containing diamagnetic analogue of sperm whale deoxymyoglobin has been measured as a function of oxygen concentration. As no covalent binding of oxygen to the metal occurs in the zinc species, the relaxation effects of O(2) on the protein (1)H resonances arise exclusively via much weaker noncovalent interactions. The relaxation effects at the amide proton sites are found to be highly localized and are derived almost exclusively from O(2) binding at the four previously identified xenon binding sites. Relative binding constants of 1.0, 0.08, 0.07, and 0.23 were determined for the Xe 1, Xe 2, Xe 3, and Xe 4 sites, respectively. In combination with earlier measurements of the kinetics of the heme binding of oxygen, these equilibria measurements enable a more detailed analysis of models characterizing O(2) entry and egress. A correlation is established between the fraction of O(2) which enters the Fe(2+)-binding site via rotation of the distal histidine side chain (so-called "histidine gate") and the experimentally observable O(2) (or CO) lifetime in the Xe 1 site. A physiological role for these secondary oxygen binding sites is proposed in enhancing the efficiency of the O(2) association reaction by rendering more favorable its competition with water binding in the distal heme pocket.  相似文献   

16.
The imidazol side group of histidine has two nitrogen atoms capable of being protonated or participating in metal binding. Hence, histidine can take on various metal-bound and protonated forms in proteins. Because of its variable structural state, histidine often functions as a key amino acid residue in enzymatic reactions. Ab initio (HF and MP2) calculations were done in modeling the cation (H+, Li+, Na+, K+, Mg2+, Ca2+) interaction with side chain of histidine. The region selectivity of metal ion complexation is controlled by the affinity of the side of attack. In the imidazol unite of histidine the ring nitrogen has much higher metal ion (as well as proton) affinity. The complexation energies with the model systems decrease in the following order: Mg2+ > Ca2+ > Li+ > Na+ > K+. The variation of the bond lengths and the extent of charge transfer upon complexation correlate well with the computed interaction energies.  相似文献   

17.
His64 and His93 are the two well-known sites of heme binding in water-dissolved holo-myoglobin, with His93 being a proximal, strongly binding partner, while the distal His64 weakly coordinates to the heme through a small-molecule ligand, e.g., water or O2. The heme bonding scheme in a water-free environment is as yet unclear. Here we employed electron transfer dissociation tandem mass spectrometry to study the preferential attachment site of the ferri-heme (Fe3+) in electrospray-produced 12+, 14+, and 16+ holo-myoglobin ions. Contrary to expectations, in lower-charge complexes that should have a structure resembling that in solution, the heme seems to be preferentially attached to the “distal” histidine. In contrast, in the highest studied charge state, the “proximal” histidine is the site of preferential attachment; the 14+ charge state is an intermediate case. This surprising finding raises a question of heme coordination in proteins transferred to water-free environment, as well as the effect of the protonation sites on heme bonding.  相似文献   

18.
Binding of two ligands trans to each other by some transition metal complexes may be cooperative [Khoroshun et al., Mol Phys 2002, 100, 523]. Several interesting consequent effects include (i) inverse relationship between bond strength and binding affinity; (ii) smaller coordination barriers to formation of weaker bonds; (iii) enhancement of Lewis acidity with increased number of ligands. We describe a simple model, sigma trans promotion effect (TPE), which considers electronic reorganization between two Lewis structures, and predicts the above-mentioned effects. The applied result of present study is the unified perspective on several facts of heme chemistry. Particularly, we reiterate an important but often overlooked notion, developed previously within the spin pairing model [Drago and Corden, Acc Chem Res 1980, 13, 353], that, in hemoproteins, the proximal histidine and the distal ligand such as O2 or CO cooperate in promoting electronic reorganization. As a result, depopulation of dz2 orbital upon ligand binding contributes to the phenomenon of hemoglobin cooperativity. The presented density functional (B3LYP) calculations on realistic models, the processes of carbon monoxide binding by Fe(II) porphyrins and dinitrogen binding by triamido/triamidoamine Mo(III) complexes, particularly the evaluation of the coordination barriers due to spin-state change by location of the minima on seams of crossing, support the TPE model predictions. From a broader theoretical perspective, the present study would hopefully stimulate the development of much needed frameworks and tools for facile comparisons of wave functions and their properties between different geometries, species, and electronic states. Advancement of practical wave function comparisons may yield fresh qualitative perspectives on chemical reactivity, and promote better understanding of related concepts such as electronic reorganization.  相似文献   

19.
Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes is applied to heme complexes. The principal new feature peculiar to five and six coordination is a term that represents the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different possible structures of complexes. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The macrocycle heme IX is wholly considered in our model. The calculations show clearly that certain conformations of heme IX–histidine models are much more favourable than others for fixing O2. From the O2 binding in haemoglobin and myoglobin and in simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide, O2 ?. Rotation of axial ligands are practically free. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.  相似文献   

20.
《Chemistry & biology》1996,3(7):561-566
Background: The Rhizobial oxygen sensor FixL is a hemoprotein with kinase activity. On binding of strong-field ligands, a change of the ferrous or ferric heme iron from high to low spin reversibly inactivates the kinase. This spin-state change and other information on the heme pocket have been inferred from enzymatic assays, absorption spectra and mutagenesis studies. We set out to investigate the spin-state of the FixL heme and to identify the hyperfine-shifted heme-proton signals by NMR spectroscopy.Results: Using one-dimensional N MR we directly observed the high- and low-spin nature of the met- and cyanomet-FixL heme domain, respectively. We determined the hyperfine-shifted 1H-NMR signals of the heme and the proximal histidine by one- and two-dimensional spectroscopy and note the absence of distal histidine signals.Conclusions: These findings support the spin-state mechanism of FixL regulation. They establish that the site of heme coordination is a histidine residue and strongly suggest that a distal histidine is absent. With a majority of the heme resonances identified, one- and two-dimensional NMR techniques can be extended to provide structural and mechanistic information about the residues that line the heme pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号