首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion insertions always involve electrode-electrolyte interface process, desolvation for instance, which determines the electrochemical kinetics. However, it′s still a challenge to achieve fast ion insertion and investigate ion transformation at interface. Herein, the interface deprotonation of NH4+ and the introduced dissociation of H2O molecules to provide sufficient H3O+ to insert into materials′ structure for fast energy storages are revealed. Lewis acidic ion-NH4+ can, on one hand provide H3O+ itself via deprotonation, and on the other hand hydrolyze with H2O molecules to produce H3O+. In situ attenuated total reflection-Fourier transform infrared ray method probed the interface accumulation and deprotonation of NH4+, and density functional theory calculations manifested that NH4+ tend to thermodynamically adsorb on the surface of monoclinic VO2, and deprotonate to provide H3O+. In addition, the inserted NH4+ has a positive effect for stabilizing the VO2(B) structure. Therefore, high specific capacity (>300 mAh g−1) and fast ionic insertion/extraction (<20 s) can be realized in VO2(B) anode. This interface derivation proposes a new path for designing proton ion insertion/extraction in mild electrolyte.  相似文献   

2.
The Raman and ir spectra of NH4MnF3, NH4ZnF3 and NH4MnCl3 have been measured in order to study the internal vibration modes of NH4+ in different surrounding conditions. The internal force constants have been determined and compared to their values in ammonium halides and in the free ion, Their trends have been discussed in terms of the hydrogen bonding and volume effects. The intraionic polarizability parameters have also been obtained and compared to those of CH4.  相似文献   

3.
An experimental and theoretical investigation is reported to analyze the relation between the structural and absorption properties of CH3NH3PbI3 in the tetragonal phase. More than 3000 geometry optimizations were performed to reveal the structural disorder and identify structures with the lowest energies. The electronic structure calculations provide an averaged band gap of 1.674 eV, which is in excellent agreement with the experimental value of about 1.6 eV. The simulations of the absorption spectrum for three representative structures with lowest energy reproduced the absorption shoulders observed in the experimental spectra. These shoulders are assigned to excitations having similar orbital characters and involving transitions between hybridized 6s(Pb)/5p(I) orbitals and 6p(Pb) orbitals. The geometries of the three structures were analyzed and the effects of the inorganic frame and the CH3NH3+ cations on the absorption properties were estimated. It was found that both changes in the inorganic frame and the CH3NH3+ cations orientations impact the absorption spectra, by modifying the transitions energies and intensities. This highlights the role of CH3NH3+ cation in influencing the absorption properties of CH3NH3PbI3 and demonstrates that CH3NH3+ cation is one of the key elements explaining the broad and nearly constant absorption spectrum in the visible range.  相似文献   

4.
Molecular motion of the ammonium ion has been investigated by IR spectroscopy in a series of ammonium salts which have been reported to be weakly hydrogen-bonded. Infrared spectra of the Isotopically isolated NH3D+ ion in NH4ClO4, and NH4BF4 have been recorded between 295 and 22 K. Broadening of the N-D stretching bands, in each case, is attributed to short residence time and indicates rapid reorientation of the NH3D+ ion. The band broadening persists down to the lowest temperature. The spectra of the NH3D+ ion in NH4BPh4, NH4SO3F, NH4SO3Me and NH4PF6 have been recorded between 295 and 90 K. No significant lifetime broadening has been found in the spectra of the NH3D+ ion in these salts.  相似文献   

5.
Summary The exchange of Co(NH3)6]3+-ions on amberlite IRC-50 resin has been studied at room temperature. For this exchange process the cations are effective in the order: Cs+<Rb+<K+<Na+<Li+<NH4 +<Mg2+ <Ca2+<H+ and (C2H5)4N<(CH3)4N+ ≪Cetyltrimethylammonium-ion <Cetylpyridinium-ion. The logarithm of the selectivity coefficient gives linear graphs when plotted against the radius of the hydrated ions or the reciprocals of theDebye-Hückel parameter?.  相似文献   

6.
The monoammoniate of lithium amidoborane, Li(NH3)NH2BH3, was synthesized by treatment of LiNH2BH3 with ammonia at room temperature. This compound exists in the amorphous state at room temperature, but at ?20 °C crystallizes in the orthorhombic space group Pbca with lattice parameters of a=9.711(4), b=8.7027(5), c=7.1999(1) Å, and V=608.51 Å3. The thermal decomposition behavior of this compound under argon and under ammonia was investigated. Through a series of experiments we have demonstrated that Li(NH3)NH2BH3 is able to absorb/desorb ammonia reversibly at room temperature. In the temperature range of 40–70 °C, this compound showed favorable dehydrogenation characteristics. Specifically, under ammonia this material was able to release 3.0 equiv hydrogen (11.18 wt %) rapidly at 60 °C, which represents a significant advantage over LiNH2BH3. It has been found that the formation of the coordination bond between ammonia and Li+ in LiNH2BH3 plays a crucial role in promoting the combination of hydridic B? H bonds and protic N? H bonds, leading to dehydrogenation at low temperature.  相似文献   

7.
《Chemical physics letters》1987,133(5):455-457
EPR spectra of lithium potassium sulfate doped with NH3+ have been recorded at 9.05 GHz. A pair of satellites can be seen symmetrically situated on either side of the main lines. The separation of the satellite lines from the main line corresponds to the 7Li NMR frequency. The distance of the interacting 7Li nucleus from the unpaired electron in NH3+ is estimated to be 3.29 Å.  相似文献   

8.
The reaction of Y+ + NH3 → Y+ NH + H2 was theoretically investigated by ab initio MO methods. Two possible pathways (1–1 H2 loss and 1–2 H2 loss) on the singlet potential energy surface and reaction mechanism were examined and discussed. The singlet and triplet PESs of this reaction system were compared to confirm the correctness of spin conservation concepts. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The analysis of the hydration of NH4+ and the estimation of relative or absolute free energies of hydration by means of Monte Carlo computer simulations using different 1-6-12 potential functions is reported. Two electrostatic representations of NH4+ (used respectively by W.L. Jorgensen and P.A. Kollman) in conjunction with two common water models (TIP3P and TIP4P) are considered. A change in relative hydration free energies of 1.7 kcal/mol is found when the NH4+ models are mutated into each other in either TIP3P or TIP4P. The NH4+ → Na+ mutation in both solvent models leads to similar but overestimated relative hydration energies of about ?28.7 kcal/mol. Similarly, the NH4+ annihilation significantly overestimates the absolute free energy of hydration.  相似文献   

10.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

11.
The transformations of Au(OH) 4 ? in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH 4 + (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH 4 + ] > ?2.0 (c Au = (1?10) × 10?4 mol/L, the monitoring time was about two weeks). When log [NH 4 + ] > 0, Au(NH3) 4 3+ dominates together with the amido form Au(NH3)3NH 2 2+ ; when log [NH 4 + ] < ?2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3) 4 3+ + OH is log $ K_{4 OH, NH_3 } The transformations of Au(OH)4 in aqueous solutions (T = 20°C, I = 1) containing NH3 and NH4+ (pH 8.1–8.5) were studied. The most pronounced changes in the system occur in the range 0 > log [NH4+] > −2.0 (c Au = (1−10) × 10−4 mol/L, the monitoring time was about two weeks). When log [NH4+] > 0, Au(NH3)43+ dominates together with the amido form Au(NH3)3NH22+; when log [NH4+] < −2.0, no changes in the spectra are observed, probably, because of the very low rate of the processes. As c Au increases in the indicated range, the polymerization rate grows. The equilibrium constant for Au(NH3)3OH2+ + NH3 = Au(NH3)43+ + OH is log = −4.2 ± 0.3. This constant was used together with other constants, taking into account possible ligand effects, to estimate the formation constant of Au(NH3)43+: logβ4 = 47 ± 1, E 3/0 = 0.64 ± 0.02 V, log = −8.5 ± 1 (substitution of 4 NH3 for 4 OH in Au(OH)4), log = 17.5 ± 1 (substitution of 4NH3 for 4Cl in AuCl4). Original Russian Text ? I.V. Mironov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 711–715.  相似文献   

12.
Organic small molecules as high-capacity cathodes for Zn-organic batteries have inspired numerous interests, but are trapped by their easy-dissolution in electrolytes. Here we knit ultrastable lock-and-key hydrogen-bonding networks between 2, 7-dinitropyrene-4, 5, 9, 10-tetraone (DNPT) and NH4+ charge carrier. DNPT with octuple-active carbonyl/nitro centers (H-bond acceptor) are redox-exclusively accessible for flexible tetrahedral NH4+ ions (H-bond donator) but exclude larger and rigid Zn2+, due to a lower activation energy (0.14 vs. 0.31 eV). NH4+ coordinated H-bonding chemistry conquers the stability barrier of DNPT in electrolyte, and gives fast diffusion kinetics of non-metallic charge carrier. A stable two-step 4e NH4+ coordination with DNPT cathode harvests a high capacity (320 mAh g−1), a high-rate capability (50 A g−1) and an ultralong life (60,000 cycles). This finding points to a new paradigm for H-bond stabilized organic small molecules to design advanced zinc batteries.  相似文献   

13.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

14.
Adsorption and 15NH3 isotopic exchange was performed on dry macroreticular polystyrene ion exchanges crosslinked with varying amounts of divinylbenzene and partially neutralized by 14NH3. Data on pressure changes and mass spectrometric analyses of isotopic composition of the gaseous phase were used to calculate equilibrium distribution of 14NH3 and 15NH3 under various dislocation conditions. It was established that along with the exchange of 14NH3 to a gaseous phase, 15NH3 penetrates to the mass of ion exchanger. This is evidently due to the migration of ammonia among functional groups. It was found that by thermal desorption under reduced pressure ammonia is released only from functional groups located on the surface of ion exchanger.  相似文献   

15.
The homogeneous exchange reaction between tetradeutero methane and ammonia was studied behind reflected shocks in a single-pulse shock tube over the temperature range of 1300–1800°K. The rate of production of CD3H at the early stages of the reaction in mixtures ranging between 1-4.5% NH3 and 1–4.3% CD4 in argon is given by d[CD3H]/dt=kb [CD4]0[NH3]0, where kb=8 × 1016 exp (?65.3 × 103/RT) cm3/mole·sec. This activation energy is considerably lower than the one that may be expected on the basis of a pure free radical mechanism. It is rationalized by C2D6 impurities in the methane. No clear answer can be obtained regarding the role of a four-center intermediate in this reaction.  相似文献   

16.
Calculations on the thermochemistry of reactions between NH4+ ions and EtHgX molecules (X = Cl, Br, I) were performed by the MNDO method. The calculations showed the possible existence of two stable isomers of composition [EtHgX, NH4]+ namely [EtHgX…?HNH3]+ and [EtHg(NH3)XH]+. Protonation of EtHgX and of CH2?CHHgX by NH4+ is characterized by high exothermicity.  相似文献   

17.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

18.
The rate coefficient for NH2 + CH4 → NH3 + CH3 (R1) has been measured in a shock tube in the temperature range 1591–2084 K using FM spectroscopy to monitor NH2 radicals. The measurements are combined with a calculation of the potential energy surface and canonical transition state theory with WKB tunneling to obtain an expression for k1 = 1.47 × 103 T 3.01 e?5001/T(K) cm3 mol?1 s?1 that describes available data in the temperature range 300 –2100 K. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 304–309, 2003  相似文献   

19.
Product distributions and rate constants for the reaction of ground state C+ ions with O2, NO, HCl, CO2, H2S, H2O, HCN, NH3, CH4, H2CO, CH3OH, and CH3NH2 have been measured. Rate constants were obtained using ion cyclotron resonance trapped ion methods at JPL, and product distributions were obtained using a tandem (Dempster-ICR) mass spectrometer at the University of Utah. Rapid carbon isotope exchange has also been observed in C+-CO collisions.  相似文献   

20.
The electronic structure and spectra of [Ru(NH3)5pyz]2+ and [(NH3)5Ru-pyz-Ru(NH3)5]4+ are calculated by the INDO (CINDO-E/S) method. Changes in molecular orbitals, charge distributions, and bond order indices of the pyrazine molecule and [Ru(NH3)5pyz]2+ complex in the [(NH3)5Ru-pyz-Ru(NH3)5]4+ binuclear complex are analyzed. St. Petersburg State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 4, pp. 12–23, July–August, 1994. Translated by. O. Kharlamova  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号