首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Chemical physics letters》1985,113(5):503-507
The two-color photoionization efficiency spectra of indole, indole-(Ar)1,2, indole-(CH4)1,2, indole-H2O, and indole-CH3OH are reported. The changes of the adiabatic ionization potential resulting from complexation are discussed in terms of the additional contributions to the cluster binding energy in the ionic ground state.  相似文献   

2.
《Chemical physics》1987,115(1):119-128
Two-color, two-photon resonance-enhanced ionization spectra have been obtained for aniline, phenol and phenotole near and above the ionization threshold in an effusive and supersonic beam. Precise adiabatic ionization energies have been measured. The electric field dependence of these energies is found to be consistent with a field-ionization red shift of the thresholds. The two-color photoionization technique has been successfully applied to determine a set of vibrational frequencies of the excited neutral and ground ionic states of these molecules.  相似文献   

3.
The photoionization and dissociative ionization of molecular aggregates using synchrotron radiation is reported. The main objective of the review is to consider the intracluster relaxation processes after ionization. For hydrogen-bonded systems proton transfer is dominant. For small clusters (n<4) appearance potentials, ionization potentials, absolute proton affinities, proton solvation energies and intermolecular bond energies in the ionic clusters are deduced. For van der Waals aggregates proton transfer can also be used to characterize the intermolecular bond in the ionic cluster. Aggregates of CH4, SiH4, CH3F show proton transfer in contrast to simple aromatic compounds, which reveal no proton transfer. From the fragmentation pattern and appearance potentials relaxation by intracluster ion molecule reactions is discussed. In heterogeneous clusters intracluster Penning ionization is observed. The shift of the charge transfer resonances depends on the π-electron density in the aromatic system. The width and spectral position of these resonances are influenced by the cluster size.  相似文献   

4.
《Chemical physics letters》1987,135(3):223-228
Large increases in the photoionization threshold energies of small Vx, NBx, and Fex clusters (x = 3–25) induced by chemisorption of H2 have been observed using photoionization time-of-flight mass spectrometry of a molecular beam. These shifts exhibit a definite dependence both on the number of atoms constituting the bare metal cluster and on the number of chemisorbed hydrogens, and are particularly large (≳ 0.8 eV) for multiple-H2 chemisorption on small clusters. A simple frontier orbital model for the chemisorption process predicts the direction of adsorbate-induced shifts in cluster ionization threshold for both H2 and NH3 as adsorbates.  相似文献   

5.
The ionization process of homogeneous and heterogeneous van-der-Waals clusters has been investigated using various ionization methods (electron bombardment, charge exchange, photoionization methods), and different analyzing techniques. Direct and indirect ionization processes can be distinguished in the experiments from the shape of the ionization curve which depends on the type of cluster. These features appear differently in homogeneous and heterogeneous systems: Homogeneous systems exhibit characteristic ionization efficiency curves where the direct ionization path appears as a sudden increase in the ionization efficiency while the indirect transition gives rise to a long drawn out tail extending to the true ionization threshold. In heterogeneous clusters the indirect ionization path proceeds via excited states of the component with the larger ionization potential and subsequent energy transfer to the other component. These transitions are shifted and broadened depending on the type of internal interaction. Conclusions are drawn concerning the geometry and the interaction potential inside the cluster. The resolution of the TEPICO (Threshold Electron Photo Ion Coincidence) experiments makes it possible to determine the kinetic energy release of the fragments. It is shown that the results are related to the stabilities of the cluster ions involved in the fragmentation chain. Results are presented for pure rare gas clusters (Ar n , Kr n , Xe n ) and for mixed systems (Ar n O2m , Ar n Xe, Kr n Xe, (CH4) n Ne).  相似文献   

6.
We report infrared photodissociation spectra for Ne, Ar, Kr, N2 and CH4 clusters which contain CH3F chromophores. The CH3Fv 3 mode is excited with a line tunable CO2 laser. Mass spectrometer detection of changes in the cluster beam intensity serve to partially distinguish the spectra of different size neutral clusters. Many spectra consist of rather broad, inhomogeneous profiles. For intermediate size ArnCH3F clusters a sharp, narrow peak is observed in the spectrum. We assign this peak as due to a cluster in which a central CH3F molecule is surrounded by at least a full shell of Ar atoms packed in a contracted icosohedral geometry. Because the Ar atoms in a gas phase cluster are unconstrained by an extended crystalline structure, the CH3F dipole is more fully stabilized (and thus red-shifted) than in a solid matrix. The dependence of the observed spectrum on cluster size is discussed. For comparison, no comparable narrow spectral features are observed in ArnC2H4 cluster spectra. Clear evidence is also presented that the fragmentation of the neutral clusters upon electron impact ionization is fairly specific. Finally, we note that ionization of ArnCH3F clusters sometimes produces ArnF+ ions. This is a fragmentation process which does not occur in free CH3F.  相似文献   

7.
The effects of the size of the ionic and neutral partners on ion-neutral complex-mediated alkane eliminations from ionized aliphatic ethers were determined by obtaining metastable decomposition spectra and photoionization ionization efficiency curves. Increasing the size of the ionic partner decreases the competitiveness of alkane elimination with alkyl loss. This is attributed to decreasing attraction between the partners with increasing distance between the neutral partner and the center of charge in the associated ion. Increasing the size of the neutral partner lowers the threshold for alkane elimination relative to that for simple dissociation when the first threshold is above ΔHf(products). This is attributed to increasing attraction between the partners with increasing polarizability of the radical in the complex. Adding a CH2 to the radical in a complex seems to increase the attraction between the partners by about 24 kJ mol?1.  相似文献   

8.
The thermal decomposition of the atmospheric constituent ethyl formate was studied by coupling flash pyrolysis with imaging photoelectron photoion coincidence (iPEPICO) spectroscopy using synchrotron vacuum ultraviolet (VUV) radiation at the Swiss Light Source (SLS). iPEPICO allows photoion mass-selected threshold photoelectron spectra (ms-TPES) to be obtained for pyrolysis products. By threshold photoionization and ion imaging, parent ions of neutral pyrolysis products and dissociative photoionization products could be distinguished, and multiple spectral carriers could be identified in several ms-TPES. The TPES and mass-selected TPES for ethyl formate are reported for the first time and appear to correspond to ionization of the lowest energy conformer having a cis (eclipsed) configuration of the O = C (H)– O – C (H2)–CH3 and trans (staggered) configuration of the O= C (H)– O – C (H2)– C H3 dihedral angles. We observed the following ethyl formate pyrolysis products: CH3CH2OH, CH3CHO, C2H6, C2H4, HC(O)OH, CH2O, CO2, and CO, with HC(O)OH and C2H4 pyrolyzing further, forming CO + H2O and C2H2 + H2. The reaction paths and energetics leading to these products, together with the products of two homolytic bond cleavage reactions, CH3CH2O + CHO and CH3CH2 + HC(O)O, were studied computationally at the M06-2X-GD3/aug-cc-pVTZ and SVECV-f12 levels of theory, complemented by further theoretical methods for comparison. The calculated reaction pathways were used to derive Arrhenius parameters for each reaction. The reaction rate constants and branching ratios are discussed in terms of the residence time and newly suggest carbon monoxide as a competitive primary fragmentation product at high temperatures.  相似文献   

9.
Understanding the gas‐phase chemistry of acetaldehyde can be challenging because the molecule can assume several tautomeric forms, namely keto, enol and carbene. The two last forms are the most stable ionic forms. Here, insight into the gas‐phase cluster ion chemistry of homogeneous acetaldehyde and mixed water–acetaldehyde clusters is provided by mass spectrometry/vacuum ultraviolet photoionization combined with density functional theory calculations. (AA)nH+ clusters (AA = acetaldehyde) and mixed (AA)nH3O+ clusters were detected using tunable vacuum ultraviolet photoionization. Barrierless proton transfers were observed during the geometry optimization of the most stable dimer structures and helped to explain the cluster ion chemistry induced by photoionization, namely the formation of deprotonated tautomers and protonated keto tautomers. Water was found to catalyze the keto–enol and keto–carbene isomerizations and facilitate the proton transfer from the ionized enol or carbene part of the cluster to the neutral keto part, resulting in protonated keto structures. The production of protonated keto structures was identified to be the main fragmentation channel following ionization of the homogeneous acetaldehyde cluster and a channel for ionized mixed clusters as well. These findings are significant for a broad range of fields, including current atmospheric models, because acetaldehyde is one of the most prominent organic species in the troposphere and ions play a crucial role in aerosol formation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The photoionization and dissociative photoionization of 1,4‐di‐tert‐butyl‐1,4‐azaborinine by means of synchrotron radiation and threshold photoelectron photoion coincidence spectroscopy is reported. The ionization energy of the compound was determined to be 7.89 eV. Several low‐lying electronically excited states in the cation were identified. The various pathways for dissociative photoionization were modeled by statistical theory, and appearance energies AE0K were obtained. The loss of isobutene in a retro‐hydroboration reaction is the dominant pathway, which proceeds with a reverse barrier. Pyrolysis of the parent compound in a chemical reactor leads to the generation of several yet unobserved boron compounds. The ionization energies of the C4H6BN isomers 1,2‐ and 1,4‐dihydro‐1,4‐azaborinine and the C3H6BN isomer 1,2‐dihydro‐1,3‐azaborole were determined from threshold photoelectron spectra.  相似文献   

11.
A general method of generating radicals in cold supersonic expansions in the gas phase is presented. The method relies on excimer laser photolysis of suitable precursor molecules in a thin quartz capillary mounted at the orifice of a pulsed gas nozzle and can easily be combined with vacuum‐UV photoionization mass spectrometry and high‐resolution photoelectron spectroscopy to study the reactivity and the rovibronic energy level structure of neutral radicals and their ions, as well as to determine highly accurate adiabatic ionization energies. The characteristics of the radical source are described in detail, and its performance is illustrated by mass spectrometric and high‐resolution photoelectron spectroscopic investigations of NH2, CH2, CH3, C2H, C2H3, and C2H5. The radical source is not only suitable to produce cold samples (rotational temperature of ca. 30 K) of radicals of moderate reactivity, such as NH2, CH3, or C2H5, but it is also useful to prepare highly reactive radicals (e.g., C2H) for spectroscopic investigations.  相似文献   

12.
The short-time behavior of small Hg n clusters immediately after single or double ionization is studied. We calculate self-consistently the ground state electronic energyE of ionized Hg n clusters. Upon ionization changes of the potential energy surface (PES) occur, which govern the atomic motion in the cluster. These changes depend on cluster size and charge and are determined by the interplay between the localization of the holes within an ionic core and the polarization energy of the neutral rest of the cluster. In the case of single ionization of the cluster the PES results mainly from hole delocalization. In contrast, in the case of double ionization the PES is governed almost only by strong environment polarization. We use our theory to explain the physical origin of the oscillations in the ionization cross-section of singly and doubly excited Hg n clusters observed in recent pump-probe experiments.  相似文献   

13.
A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (12A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 12A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH3, NH2, NH3, CO, HCCO and NH2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.  相似文献   

14.
The influence of formic acid on water cluster aggregation has been investigated experimentally by mass spectrometry and tunable UV laser ionization applied to Na-doped clusters formed in the supersonic expansion of water vapors seeded with formic acid (FA) as well as theoretically using high level quantum chemistry methods. The mass spectra of Na−FA(H2O)n clusters show an enlarging of mass distribution toward heavier clusters with respect to the Na−(H2O)n clusters, suggesting similar mass distribution in neutral clusters and an influence of formic acid in water aggregation. Density functional theory and coupled-cluster type (DLPNO-CCSD(T)) calculations have been used to calculate structures and energetics of neutral and ionized Na−FA(H2O)n as well as neutral FA(H2O)n. Na-doped clusters are characterized by very stable geometries. The theoretical adiabatic ionization potential values match pretty well the measured appearance energies and the calculated first six electronic excited states show Rydberg-type characters, indicating possible autoionization contributions in the mass spectra. Finally, theoretical calculations on neutral FA(H2O)n clusters show the possibility of similarly stable structures in small clusters containing up to n=4–5 water molecules, where FA interacts significantly with waters. This suggests that FA can compete with water molecules in the starting stage of the aggregation process, by forming stable nucleation seed.  相似文献   

15.
Previous work on the determination of the photoionization threshold (Isol) of tryptophan has now been extended to indole as a solute, both in tetramethylsilane (TMSi) and H2O solvents. In TMSi, electron scavenging by N2O or photoconductivity measurements lead to the same Isol value: 4.95 ± 0.1 eV. In water, Isol is found equal to 4.35 ± 0.1 eV. From these experiments, information on the ionization mechanism, on the oxidized solute and on the solvent can be gained: (i) the scavenger electron affinity does not intervene in the energy balance providing Isol; (ii) an “effective” ionic radius of indole (1.40 Å) is estimated which suggests that the positive charge remains highly localized on the N-atom of the indole ring; (iii) a value of ?1.2 ± 0.1 eV can be deduced for Vo, the conduction band edge of water; (iiii) from the above findings, the energy gap EG of pure water, considered as a semi-conductor, would be close to 7 eV. Such a result is discussed in terms of literature data pertaining to electron ejection in pure liquid water and X-ray photoelectron spectroscopy of amorphous ice.  相似文献   

16.
Silver clusters containing up to 40–50 atoms are produced by laser vaporization in a pulsed-nozzle molecular beam source and studied with laser photoionization mass spectroscopy. A variety of Nd:YAG pumped dye laser and UV excimer laser wavelengths are used to achieve ionization. Ionization dynamics are studied by varying the laser wavelength and fluence. Bracketing experiments under single-photon ionization conditions are used to estimate ionization potentials as a function of cluster size. An even-odd ionization potential alternation is observed with odd-numbered clusters (N=3, 5, 7 ...) having lower ionization potentials than adjacent even-numbered species. Shell closings at clusters containing 2, 8 20 and 40 electrons are observed consistent with a one-electron shell model picture of cluster electronic structure. Resonance-enhanced ionization produces a vibrationally resolved spectrum for the trimer, Ag3, yielding an electronic state assignment and excited state vibrational frequencies. Fragmentation in dimer ionization via theE state at 249 nm establishes the dissociation energy of Ag 2 + to be <2.1 eV.  相似文献   

17.
Vibrational spectra of the pyrimidine cation in the electronic ground state were measured via several intermediate states of the first excited state (00,16a1, 16a2, 16a4, 16b1, 10b1, 6b2, 6a1, 11, 41, 42 and 121) by mass-analyzed threshold ionization spectroscopy. For the first time, several vibrational modes could be assigned in the first excited and the ionic ground states. Anharmonic coupling is shown to occur in the first excited state due to Fermi resonance between the 11 and the 16a4 vibrations. From the results of the measurements and calculations presented here, pyrimidine is predicted to be planar in the first excited and the ionic ground states, and it belongs to the C2V point group.  相似文献   

18.
Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states.  相似文献   

19.
The dissociative photoionization of molecular‐beam cooled CH2CO in a region of ?10–20 eV was investigated with photoionization mass spectrometry using a synchrotron radiation as the light source. Photoionization efficiency curves of CH2CO+ and of observed fragment ions CH2+, CHCO+, HCO+, C2O+, CO+, and C2H2+ were measured to determine their appearance energies. Relative branching ratios as a function of photon energy were determined. Energies for formation of these observed fragment ions and their neutral counterparts upon ionization of CH2CO are computed with the Gaussian‐3 method. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. The principal dissociative processes are direct breaking of C=C and C‐H bonds to form CH2+ + CO and CHCO+ + H, respectively; at greater energies, dissociation involving H migration takes place.  相似文献   

20.
Aluminium cluster anions (Al n ? ) are produced by laser vaporization without additional ionization and cooled by supersonic expansion. Photoelectrons from mass-identified anion bunches (n=2...25) are detached by laser light (hv=3.68 eV) and undergo energy analysis in a magnetic bottle-type time-of-flight spectrometer. The measurements provide information about the electronic excitation energies from ionic ground states to neutral states of the clusters. In contrast to bulk aluminium these cluster photoelectron spectra partially have well-resolved bands which originate from low-lying excited bands. For small clusters, especially the aluminium dimer and trimer, quantum-chemical calculations will be compared to the measurements. The electron affinity size dependence of larger clusters shows conclusive evidence for “shell” effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号