首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses X-ray crystallography, theory and Langmuir isotherm analysis to explore the conformations and molecular packing of alkyl all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl-pentafluoroaryl benzenes. Favoured conformations retain the more polar triaxial C–F bond arrangement of the all-cis 2,3,4,5,6-pentafluorocyclohexyl ring systems with the alkyl substituent adopting an equatorial orientation, and accommodating strong supramolecular interactions between rings. Langmuir isotherm analysis on a water subphase of a long chain fatty acid and alcohol carrying terminal all-cis 2,3,4,5,6-pentafluorocyclohexyl rings do not show any indication of monolayer assembly relative to their cyclohexane analogues, instead the molecules appear to aggregate and form higher molecular assemblies prior to compression. The study indicates the power and potential of this ring system as a motif for ordering supramolecular assembly.

Theory and Langmuir isotherm analysis was used to explore the conformations and molecular packing of alkyl all-cis 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl-pentafluoroaryl benzenes.  相似文献   

2.
Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.

Un-protected 2-acetamido sugars are stereoselectively converted into 1,2-trans glycosides and (1→6)-linked disaccharides without any protecting groups. Reaction proceeds via intermediate oxazolines which react with acceptors under acid catalysis.  相似文献   

3.
Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the transcis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t-Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state transcis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t-Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha''s rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.

Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans-azobenzene (t-Az) and several alkyl-substituted t-Az derivatives encapsulated in a water-soluble supramolecular host–guest complex.  相似文献   

4.
Efficient photoswitching in the solid-state remains rare, yet is highly desirable for the design of functional solid materials. In particular, for molecular solar thermal energy storage materials high conversion to the metastable isomer is crucial to achieve high energy density. Herein, we report that 4-methoxyazobenzene (MOAB) can be occluded into the pores of a metal–organic framework Zn2(BDC)2(DABCO), where BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2.2.2]octane. The occluded MOAB guest molecules show near-quantitative EZ photoisomerization under irradiation with 365 nm light. The energy stored within the metastable Z-MOAB molecules can be retrieved as heat during thermally-driven relaxation to the ground-state E-isomer. The energy density of the composite is 101 J g−1 and the half-life of the Z-isomer is 6 days when stored in the dark at ambient temperature.

4-Methoxyazobenzene can be occluded into the pores of a MOF and show near-quantitative EZ photoisomerization under irradiation with 365 nm light. The energy density of the composite is 101 J g−1 and the half-life of the Z-isomer is 6 days.  相似文献   

5.
Recent advances in the research field of supramolecularly engineered dye aggregates have enabled the design of simple one-dimensional stacks such as fibers and of closed structures such as nanotoroids (nanorings). More complex and advanced supramolecular systems could potentially be designed using a molecule that is able to provide either of these distinct nanostructures under different conditions. In this study, we introduced bulky but strongly aggregating cholesterol units to a scissor-shaped azobenzene dyad framework, which affords either nanotoroids, nanotubes, or 1D fibers, depending on the substituents. This new dyad with two trans-azobenzene arms shows supramolecular polymorphism in its temperature-controlled self-assembly, leading to not only oligomeric nanotoroids as kinetic products, but also to one-dimensional fibers as thermodynamic products. This supramolecular polymorphism can also be achieved via photo-triggered self-assembly, i.e., irradiation of a monomeric solution of the dyad with two cis-azobenzene arms using strong visible light leads to the preferential formation of nanotoroids, whereas irradiation with weak visible light leads to the predominant formation of 1D fibers. This is the first example of a successful light-induced modulation of supramolecular polymorphism to produce distinctly nanostructured aggregates under isothermal conditions.

Introduction of the bulky yet strongly aggregating cholesterol units to an azobenzene dyad lead to a supramolecular polymorphism not only in its temperature-controlled but also in photo-triggered self-assembly, leading to toroids and helical fibers.  相似文献   

6.
Nucleic acid-based dissipative, out-of-equilibrium systems are introduced as functional assemblies emulating transient dissipative biological transformations. One system involves a Pb2+-ion-dependent DNAzyme fuel strand-driven network leading to the transient cleavage of the fuel strand to “waste” products. Applying the Pb2+-ion-dependent DNAzyme to two competitive fuel strand-driven systems yields two parallel operating networks. Blocking the competitively operating networks with selective inhibitors leads, however, to gated transient operation of dictated networks, yielding gated catalytic operations. A second system introduces a “non-waste” generating out-of-equilibrium, dissipative network driven by light. The system consists of a trans-azobenzene-functionalized photoactive module that is reconfigured by light to an intermediary state consisting of cis-azobenzene units that are thermally recovered to the original trans-azobenzene-modified module. The cyclic transient photoinduced operation of the device is demonstrated. The kinetic simulation of the systems allows the prediction of the transient behavior of the networks under different auxiliary conditions.

Functional DNA modules are triggered in the presence of appropriate inhibitors to yield transient gated catalytic functions, and a photoresponsive DNA module leads to “waste-free” operation of transient, dissipative dynamic transitions.  相似文献   

7.
Advanced analytical applications require smart materials and sensor systems that are able to adapt or be configured to specific tasks. Based on reversible photochemistry in nanoporous materials, we present a sensor array with a selectivity that is reversibly controlled by light irradiation. The active material of the sensor array, or electronic nose (e-nose), is based on metal–organic frameworks (MOFs) with photoresponsive fluorinated azobenzene groups that can be optically switched between their trans and cis state. By irradiation with light of different wavelengths, the transcis ratio can be modulated. Here we use four transcis values as defined states and employ a four-channel quartz-crystal microbalance for gravimetrically monitoring the molecular uptake by the MOF films. We apply the photoprogrammable e-nose to the sensing of different volatile organic compounds (VOCs) and analyze the sensor array data with simple machine-learning algorithms. When the sensor array is in a state with all sensors either in the same trans- or cis-rich state, cross-sensitivity between the analytes occurs and the classification accuracy is not ideal. Remarkably, the VOC molecules between which the sensor array shows cross-sensitivity vary by switching the entire sensor array from trans to cis. By selectively programming the e-nose with light of different colors, each sensor exhibits a different isomer ratio and thus a different VOC affinity, based on the polarity difference between the trans- and cis-azobenzenes. In such photoprogrammed state, the cross-sensitivity is reduced and the selectivity is enhanced, so that the e-nose can perfectly identify the tested VOCs. This work demonstrates for the first time the potential of photoswitchable and thus optically configurable materials as active sensing material in an e-nose for intelligent molecular sensing. The concept is not limited to QCM-based azobenzene-MOF sensors and can also be applied to diverse sensing materials and photoswitches.

A sensor array with four identical photoresponsive azobenzene-containing metal–organic framework films is selectively irradiated. By photoprogamming the array, the sensor selectivity is switched and optimized.  相似文献   

8.
The synthesis of a series of azobenzene containing liquid crystalline methacrylic homopolymers, poly(4-ω-methacryloyloxy-hexyloxy-4′-ethoxyazobenzene) [Poly(M6A)], with distinct average chain lengths and low polydispersity has been achieved by Atom Transfer Radical Polymerization (ATRP) in THF solution using allyl 2-bromoisobutyrate as initiator and Cu(I)Br as catalyst. Under the adopted conditions the living centers concentration is found to be constant throughout the polymerization process and well defined chain end-groups are obtained. All the obtained polymeric samples, having average molecular mass ranging from 3300 to 14000 g/mol, exhibit smectic and nematic liquid-crystalline phases on heating, with transition temperatures strongly dependent on polymerization degree, as characterized by differential scanning calorimetry and polarized optical microscopy.The photomechanical effects (i.e. the dependence of volume and density) exhibited upon trans-to-cis and cis-to-trans photoisomerization of the azobenzene mesogenic groups have been investigated by ellipsometry and related to molecular weight, with particular attention to important parameters for potential applications such as the relative variation of total volume, response time, stability and reproducibility.  相似文献   

9.
Organic single-component ferroelectrics, as an important class of metal-free ferroelectrics, are highly desirable because of their easy processing, mechanical flexibility, and biocompatibility. However, although nearly 50 years have passed since the discovery of photochromism in azobenzene-doped cholesteric liquid crystals, ferroelectricity has never been found in azobenzene-based crystals. Here, we use an amino group to substitute a fluorine atom of 2,2′,4,4′,6,6′-hexafluoroazobenzene, which successfully introduces ferroelectricity into 2-amino-2′,4,4′,6,6′-pentafluoroazobenzene (APFA). APFA shows an extremely high Curie temperature (Tc) of 443 K, which is outstanding among single-component ferroelectrics. It also exhibits an indirect optical band gap of 2.27 eV as well as photoisomerization behavior between the trans-form and the cis-form triggered by pedal motion. To our knowledge, APFA is the first azobenzene-based ferroelectric crystal. This work opens an avenue to design excellent single-component ferroelectrics and will inspire the exploration of azobenzene-based ferroelectrics for promising applications in biofriendly ferroelectric devices.

The first azobenzene-based organic single-component ferroelectric 2-amino-2′,4,4′,6,6′-pentafluoroazobenzene was designed, which shows an exceptionally high Curie temperature (Tc) of 443 K.  相似文献   

10.
The effect of the composition of the dioxane-water mixture on the ability of 9-ethylthiacarbocyanine to participate in competitive reactions of trans-cis photoisomerization and photoinduced electron transfer was studied. An increase in the dioxane content in the range 0–50 vol % leads to a shift of the equilibrium between the dye dimers and monomers toward the monomers (cis-monomers), which is accompanied by a drop in the yield of the triplet dimer molecules, which appear under the action of a laser flash, and electron-transfer products that are formed via the triplet state of dimers in the presence of methylviologen. With growing the dioxane content in the range 50–80 vol %, a shift of the equilibrium between the cis-and trans-monomers toward the trans-monomers occurs, which is accompanied by an increase in the fluorescence intensity. At the dioxane content above 80 vol %, a further shift of the equilibrium toward the trans-monomers occurs, which is accompanied by a substantial increase in the fluorescence intensity and an appearance under the action of a laser flash of the band of the triplet-triplet absorption of the trans-monomer and the absorption band of the cis-monomer as a result of trans-cis photoisomerization. The trans-monomers in the triplet state participate in the electron-transfer reaction with methylviologen. The intersystem crossing process competes with fluorescence and the trans-cis isomerization reaction, which occurs via the excited singlet state of the trans-monomers.  相似文献   

11.
Controlling the reciprocity between chemical reactivity and supramolecular structure is a topic of great interest in the emergence of molecular complexity. In this work, we investigate the effect of a covalent reaction as a trigger to depolymerize a supramolecular assembly. We focus on the impact of an in situ thiol–ene reaction on the (co)polymerization of three derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with cysteine, hexylcysteine, and alkyl side chains: Cys-BTA, HexCys-BTA, and a-BTA. Long supramolecular polymers of Cys-BTA can be depolymerized into short dimeric aggregates of HexCys-BTAvia the in situ thiol–ene reaction. Analysis of the system by time-resolved spectroscopy and light scattering unravels the fast dynamicity of the structures and the mechanism of depolymerization. Moreover, by intercalating the reactive Cys-BTA monomer into an unreactive inert polymer, the in situ thiol–ene reaction transforms the intercalator into a sequestrator and induces the depolymerization of the unreactive polymer. This work shows that the implementation of reactivity into supramolecular assemblies enables temporal control of depolymerization processes, which can bring us one step closer to understanding the interplay between non-covalent and covalent chemistry.

We report on the controlled depolymerization of supramolecular 1D polymers into well-defined dimers triggered by a covalent reaction on the side chains of the monomer.  相似文献   

12.
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.

Stereoselective and one-pot synthesis of Lentinus giganteus glycans with antitumor activities has been accomplished, which features a newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-galactosylation strategy.  相似文献   

13.
Chemical warfare agents (CWAs) such as phosgene and nerve agents pose serious threats to our lives and public security, but no tools can simultaneously screen multiple CWAs in seconds. Here, we rationally designed a robust sensing platform based on 8-cyclohexanyldiamino-BODIPY (BODIPY-DCH) to monitor diverse CWAs in different emission channels. Trans-cyclohexanyldiamine as the reactive site provides optimal geometry and high reactivity, allowing trans-BODIPY-DCH to detect CWAs with a quick response and high sensitivity, while cis-BODIPY-DCH has much weaker reactivity to CWAs due to intramolecular H-bonding. Upon reaction with phosgene, trans-BODIPY-DCH was rapidly converted to imidazolone BODIPY (<3 s), triggering green fluorescence with good sensitivity (LOD = 0.52 nM). trans-BODIPY-DCH coupled with nerve agent mimics, affording a blue fluorescent 8-amino-BODIPY tautomer. Furthermore, a portable test kit using trans-BODIPY-DCH displayed an instant response and low detection limits for multiple CWAs. This platform enables rapid and highly sensitive visual screening of various CWAs.

Chemical warfare agents (CWAs) such as phosgene and nerve agents pose serious threats to our lives and public security, necessitating tools that can simultaneously screen multiple CWAs in seconds.  相似文献   

14.
Over the past few decades, numerous model systems have been discovered that create carbon–carbon bonds from CO. These reactions are of potential relevance to the Fischer–Tropsch process, a technology that converts syngas (H2/CO) into mixtures of hydrocarbons. In this paper, a homogeneous model system that constructs carbon chains from CO is reported. The system exploits the cooperative effect of a transition metal complex and main group reductant. An entire reaction sequence from C1 → C2 → C3 → C4 has been synthetically verified. The scope of reactivity is broad and includes a variety of transition metals (M = Cr, Mo, W, Mn, Re, Co), including those found in industrial heterogeneous Fischer–Tropsch catalysts. Variation of the transition metal fragment impacts the relative rate of the steps of chain growth, allowing isolation and structural characterisation of a rare C2 intermediate. The selectivity of carbon chain growth is also impacted by this variable; two distinct isomers of the C3 carbon chain were observed to form in different ratios with different transition metal reagents. Based on a combination of experiments (isotope labelling studies, study of intermediates) and calculations (DFT, NBO, ETS-NOCV) we propose a complete mechanism for chain growth that involves defined reactivity at both transition metal and main group centres.

A homogeneous model system that constructs carbon chains from CO is reported. The system exploits the cooperative effect of a transition metal complex and main group reductant. An entire reaction sequence from C1 → C2 → C3 → C4 has been synthetically verified.  相似文献   

15.
The development of the first asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines is reported. Utilizing [Ir(cod)Cl]2 and a commercially available chiral Josiphos ligand, a variety of differentially substituted isoquinolines are hydrogenated to produce enantioenriched trans-tetrahydroisoquinolines in good yield with high levels of enantioselectivity. Directing group studies demonstrate that the hydroxymethyl functionality at the C1 position is critical for hydrogenation to favor the trans-diastereomer. Preliminary mechanistic studies reveal that non-coordinating chlorinated solvents and halide additives are crucial to enable trans-selectivity.

trans-Selective asymmetric hydrogenation of 1,3-disubstituted isoquinolines.  相似文献   

16.
A ligand-controlled palladium-catalyzed highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols with aminals has been established, which allows for producing either cis- or trans-disubstituted isochromans in good yields with complete regioselectivity and good to excellent diastereoselectivity. Moreover, the chiral cis-products were also obtained in good yields with up to 94% ee by using a chiral phosphinamide as the ligand. Mechanistic studies revealed that the hydroxyl group plays a key role in facilitating the Pd-catalyzed Heck insertion regioselectively taking place across the internal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond of conjugated dienes.

An efficient hydrogen-bonding assisted directing strategy has been identified, which enables the Pd-catalyzed highly regioselective and diastereodivergent 3,4-difunctionalized aminomethylative annulation of dienyl alcohols with aminals.  相似文献   

17.
Multivalent supramolecular assemblies have recently attracted extensive attention in the applications of soft materials and cell imaging. Here, we report a novel multivalent supramolecular assembly constructed from 4-(4-bromophenyl)pyridine-1-ium bromide modified hyaluronic acid (HABr), cucurbit[8]uril (CB[8]) and laponite® clay (LP), which could emit purely organic room-temperature phosphorescence (RTP) with a phosphorescence lifetime of up to 4.79 ms in aqueous solution via multivalent supramolecular interactions. By doping the organic dyes rhodamine B (RhB) or sulfonated rhodamine 101 (SR101) into the HABr/CB[8]/LP assembly, phosphorescence energy transfer was realized with high transfer efficiency (energy transfer efficiency = 73–80%) and ultrahigh antenna effect (antenna effect value = 308–362) within the phosphorescent light harvesting system. Moreover, owing to the dynamic nature of the noncovalent interactions, a wide-range spectrum of phosphorescence energy transfer outputs could be obtained not only in water but also on filter paper and a glass plate by adjusting the donor–acceptor ratio and, importantly, white-light emission was obtained, which could be used in the application of information encryption.

An ultralong lifetime supramolecular assembly was constructed via multivalent supramolecular interactions and achieved phosphorescence light harvesting. Multicolor (including white) broad-spectrum outputs could be achieved in water and also on filter paper and a glass plate.  相似文献   

18.
Control over the photochemical outcome of photochromic molecules in solution represents a major challenge, as photoexcitation often leads to multiple competing photochemical and/or supramolecular pathways resulting in complex product mixtures. Herein, we demonstrate precise and efficient control over the photochemical behaviour of cyanostilbenes in solution using a straightforward solvent-controlled approach based on supramolecular polymerization. To this end, we designed a π-extended cyanostilbene bolaamphiphile that exhibits tuneable solvent-dependent photochemical behaviour. Photoirradiation of the system in a monomeric state (in organic solvents) exclusively leads to a highly reversible and efficient E/Z photoisomerization, whereas a nearly quantitative [2 + 2] photocycloaddition into a single cyclobutane (anti head-to-tail) occurs in aqueous solutions. These results can be rationalized by a highly regular and preorganized antiparallel J-type arrangement of the cyanostilbene units that is driven by aqueous supramolecular polymerization. The presented concept demonstrates a novel approach towards solvent-selective and environmentally friendly photochemical transformations, which is expected to broaden the scope of supramolecular polymerization.

Controlled supramolecular polymerization is used to switch the photoresponsive behaviour of cyanostilbenes from a reversible E/Z photoisomerization in organic solvents to a highly efficient and selective [2 + 2] photocycloaddition in aqueous media.  相似文献   

19.
Kinetic control over structures and functions of complex assembly systems has aroused widespread interest. Understanding the complex pathway and transient intermediates is helpful to decipher how multiple components evolve into complex assemblies. However, for supramolecular polymerizations, thorough and quantitative kinetic analysis is often overlooked. Challenges remain in collecting the information of structure and content of transient intermediates in situ with high temporal and spatial resolution. Here, the unsolved evolution mechanism of a classical self-sorting supramolecular copolymerization system was addressed by employing multidimensional NMR techniques coupled with a microfluidic technique. Unexpected complex pathways were revealed and quantitatively analyzed. A counterintuitive pathway involving polymerization through the ‘error-correction’ of non-polymerizable transient intermediates was identified. Moreover, a ‘non-classical’ step-growth polymerization process controlled by the self-sorting mechanism was unraveled based on the kinetic study. Realizing the existence of transient intermediates during self-sorting can encourage the exploitation of this strategy to construct kinetic steady state assembly systems. Moreover, the strategy of coupling a microfluidic technique with various characterization techniques can provide a kinetic analysis toolkit for versatile assembly systems. The combined approach of coupling thermodynamic and kinetic analyses is indispensable for understanding the assembly mechanisms, the rules of emergence, and the engineering of complex assembly systems.

Polymerization through the ‘error-correction’ of non-polymerizable transient intermediates was identified in a classical self-sorting supramolecular copolymerization system by employing NMR coupled with a microfluidic technique.  相似文献   

20.
The photomechanics of azobenzene LCNs is modeled using a nonlinear continuum mechanics approach that couples photoisomerization of liquid crystal domain structures with light absorption and deformation of a glassy polymer network. The effects during UV‐stimulated trans–cis photomechanical deformation versus blue‐green light (trans–cis–trans) photomechanical deformation are simulated. Different bending deformation is predicted by assuming liquid‐crystal order/disorder behavior during trans–cis photoisomerization in comparison to light‐polarization‐driven reorientation of the trans phase during potential trans‐cis‐trans photoisomerization. Light‐controlled deformation mechanisms offer support for improved control of photo‐responsive morphing structures with a single blue‐green polarized light source.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号