首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
The present paper is the Part II of a broad study concerning void fraction and pressure drop for air-water upward external flow across tube bundles. In the Part I, the experimental facility and the data regression procedures were described and the experimental results are presented and discussed. Initially, Part II presents a literature review concerning void fraction and pressure drop predictive methods available in the open literature for two-phase upward flow across tube bundles. Next, the methods from literature are compared among them and with the database presented in paper Part I. Significant discrepancies are observed among the predictive methods, and deviations as high as two orders of magnitude are verified among the predicted values of pressure drop. Then, a new void fraction predictive method is proposed based on the experimental results and on the minimum kinetic energy principle. This method provides satisfactory predictions of the results described in paper Part I and also of independent data from the literature. A new predictive method for frictional pressure drop during two-phase flow based on two-phase multiplier is also proposed. This method predicted 94% of the experimental data obtained in the present study within an error margin of ± 30%, and also provides accurate predictions of independent results for triangular tube bundles gathered in the open literature.  相似文献   

3.
Two-phase air–water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37–42.36 and 0.005–3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications.  相似文献   

4.
5.
The above referenced paper, published in International Journal of Multiphase Flow (Pan and Hanratty, 2002), proposed an entrainment fraction correlation for annular flow in horizontal pipes. The entrainment fraction in annular flow is defined as the ratio of the mass flow rate of the liquid droplets in the gas to the total mass flow of liquid, FE = WLE/WL. The proposed correlation was verified with experimental data for liquids with viscosities close to that of water. The proposed entrainment fraction correlation includes another correlation for the critical film flow rate, WF,cr to estimate a maximum entrainment fraction FE,max. It is shown that the critical film flow rate correlation can result in negative maximum entrainment fraction values, for low liquid flow rates.  相似文献   

6.
7.
8.
9.
10.
11.
The discussion concerns a recently proposed definition of average stress for granular materials, one which can manifest asymmetry in the absence of surface couples, body couples, and contact couples. The average stress was derived from a new postulate that employs virtual work terminology. The discussion shows that the postulate leads to a non-unique average stress and to a non-unique stress asymmetry.  相似文献   

12.
13.
14.
15.
In a recent article, Fourar et al. (Transp Porous Med, 2005, doi:10.1007/s11242-004-6800-6) analyzed the effect of heterogeneity in the permeability distribution on Forchheimer flow in porous media. They derived expressions to calculate the effective inertial coefficient in serial layers, parallel layers, and two-dimensional correlated media. Here, we highlight an inconsistency in their first-order expression for serial layers and extend their findings by providing closed-form expressions for the effective inertial coefficient in the case of a lognormal permeability distribution.  相似文献   

16.
17.
In the above paper a theoretical investigation of MHD convective flow and heat transfer of an incompressible viscous nanofluid past a porous vertical stretching sheet in the presence of variable stream condition is presented. The governing boundary layer equations are transformed by a Lie symmetry group transformation and the ordinary differential equations are solved numerically using Runge–Kutta Gill method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号