首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

2.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

3.
There is a strong interest in developing thermally stable metallization schemes for ZnO and boride-based contact stacks are expected to have potential because of their thermodynamic stability. The contact characteristics on bulk single-crystal n-ZnO of a ZrB2/Pt/Au metallization scheme deposited by sputtering are reported as a function of annealing temperature in the range 300-800°C. The contacts were rectifying for anneal temperatures <500 °C but exhibited Ohmic behavior at higher temperatures and exhibit a minimum specific contact resistivity of 9 × 10−3 Ω cm after 700 °C anneals. The contact stack reverts to rectifying behavior after annealing above 800 °C, coincident with a degraded surface morphology and intermixing of the Au, Pt and ZrB2. The boride-based contacts exhibit higher thermal stability but poorer specific contact resistivity than conventional Ti/Au metal stacks on ZnO.  相似文献   

4.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

5.
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 1018 cm−3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I-V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10−6 Ω cm2 after annealing at 900 °C for 1 min in a N2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.  相似文献   

6.
Ohmic contact formation on n-GaN using a novel Ti/Al/W2B/Ti/Au metallization scheme was studied using contact resistance, scanning electron microscopy and Auger electron spectroscopy measurements. A minimum specific contact resistivity of 7 × 10−6 Ω cm2 was achieved at an annealing temperature of 800 °C. The contact resistance was essentially independent of measurement temperature, indicating that field emission plays a dominant role in the current transport .The Ti began to outdiffuse to the surface at temperatures of ∼500 °C, while at 800 °C the Al also began to intermix within the contact. By 1000 °C, the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. The contact resistance showed excellent stability for extended periods at 200 °C, which simulates the type of device operating temperature that might be expected for operation of GaN-based power electronic devices.  相似文献   

7.
The fabrication of high reflective Ni/Ag/(Ti, Mo)/Au Ohmic contacts for flip-chip light-emitting diode (FCLED) are proposed and considered, Ni/Ag/Au Ohmic contacts are also fabricated to compare their resulting reflectivities. From secondary ion mass spectrometry (SIMS) depth profiles, it indicates that the Au in-diffusion occurs in Ni/Ag/Au contacts after annealing. It is considered that Au in-diffusion, which is intermixed with Ag, Ni and GaN in Ni/Ag/Au contacts after annealing, is responsible for the resulting low reflectance (63% at the wavelength of 465 nm). To avoid Au in-diffusion and enhance the reflectivity, a diffusion barrier metal (Ti or Mo) between Ni/Ag and Au is fabricated and examined. It is demonstrated and found that an insertion of diffusion barrier metal of Ti enables to block Au diffusion effectively and also improve the reflectivity significantly, up to 93%.  相似文献   

8.
Transfer length method (TLM) structures were fabricated to characterize the Ni/Au/AuGe-n+-GaAs contacts for quantum dot infrared photodetector (QDIP). Low specific contact resistance of the order of 10−5 Ω cm2 indicates formation of a good Ohmic contact. The current-voltage measurements show that current transport is linear with no significant interfacial modification due to alloying of the contact metal. Low contact resistance makes this scheme suitable for the fabrication of heterostructure QDIP devices.  相似文献   

9.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

10.
Al, Au, Ti/Al and Ti/Au contacts were prepared on n-GaN and annealed up to 900 °C. The structure, phase and morphology were studied by cross-sectional transmission and scanning electron microscopy as well as by X-ray diffraction (XRD), the electrical behaviour by current-voltage measurements. It was obtained that annealing resulted in interdiffusion, lateral diffusion along the surface, alloying and bowling up of the metal layers. The current-voltage characteristics of as-deposited Al and Ti/Al contacts were linear, while the Au and Ti/Au contacts exhibited rectifying behaviour. Except the Ti/Au contact which became linear, the contacts degraded during heat treatment at 900 °C. The surface of Au and Ti/Au contacts annealed at 900 °C have shown fractal-like structures revealed by scanning electron microscopy. Transmission electron microscopy and XRD investigations of the Ti/Au contact revealed that Au diffused into the n-GaN layer at 900 °C. X-ray diffraction examinations showed, that new Ti2N, Au2Ga and Ga3Ti2 interface phases formed in Ti/Au contact at 900 °C, new Ti2N phase formed in Ti/Al contact at 700 and 900 °C, as well as new AlN interface phase developed in Ti/Al contact at 900 °C.  相似文献   

11.
The use of a silicon interface pre-treatment to produce low resistance Ohmic nickel contacts to 4H-SiC, circumventing the need for contact post annealing, is reported. The effects of two different SiC pre-metal deposition surface preparation techniques: RCA cleaning (control sample) and a silicon interlayer pre-treatment (SIP), are discussed. Electrical characterization of contacts on treated surfaces, using circular transfer length measurements (CTLM), revealed that contacts to RCA cleaned samples were Schottky in nature, unless annealed at temperatures greater than 700 °C. In contrast, contacts formed on SIP SiC surfaces exhibited Ohmic behaviour directly after fabrication, without the need for post metallisation annealing. Average contact resistances as low as 1.3E−05 Ω cm2 have been recorded for SIP samples. This fabrication process has distinct technological advantages compared to standard techniques for forming Ohmic contacts to SiC. To consolidate our findings the chemical and electrical nature of the SIP nickel-SiC interface, as it was sequentially formed and annealed, was examined using X-ray photoelectron spectroscopy (XPS). Based on these results, a model is proposed to explain the as-deposited Ohmic contact nature of the SIP sample.  相似文献   

12.
The electrical and microstructural properties of the PdSi based ohmic contacts on n-InP are discussed in the research. A low specific contact resistance of 2.25 × 10−6 Ω cm2 is obtained on Au/Si/Pd/n-InP contact after rapid thermal annealing (RTA) at 450 °C for 30 s. The low contact resistance can be maintained at the order of 10−6 Ω cm2 even up to 500 °C annealing. From the Auger analysis, it is found that both the outdiffusion of In and the indiffusion of Si into the InP surface occurred at the ohmic contact sample. The formation of the Pd3Si compound lowered the barrier of the contact. The reactions between Pd and InP of the contact, forming In vacancies, and leading the doping of Si to the InP contact interface.  相似文献   

13.
The optoelectronic characteristics of Ni/Au Schottky photodiodes based on Al0.35Ga0.65N were investigated. The transmission of the Ni (50 Å)/Au (50 Å) layer was determined by evaporating it on a quartz substrate. As evaporated, the transmission coefficient in the 200–350 nm wavelength range was found to be 43 to 48%. Annealing at temperatures of up to 400 °C did not influence the transmission coefficient. After annealing at 500 °C, the transmission coefficient increased from 50 to 68% over the 200–350 nm range. The reverse bias current was optimised in terms of annealing temperature and was found to be as low as 1.94×10−13 A after annealing at 400 °C for a 0.6 mm diameter contact. The Schottky barrier heights increased with annealing temperature reaching as high as 1.46 and 1.89 eV for IV and CV measurements, respectively. The quantum efficiency was measured to be 20.5% and the responsivity reached its peak of 0.046 A/W at 275 nm. The cut-off wavelength was 292 nm.  相似文献   

14.
A Ru capping layer is employed to improve the thermal stability of Ag ohmic reflectors for high-power GaN-based light-emitting diodes (LEDs). The 20-nm-thick Ru capping layer is shown to be fairly effective in suppressing agglomeration by forming RuO2. The Ag/Ru contacts exhibit specific contact resistance of 8.1 × 10−5 Ω cm2 and reflectance of ∼89% at a wavelength of 450 nm when annealed at 500 °C for 1 min, which are much better than that of Ag only contacts. Blue LEDs fabricated with the 500 °C-annealed Ag/Ru contacts give a forward voltage of 2.98 V at an injection current of 20 mA, which is lower than that (3.02 V) of LEDs with the 500 °C-annealed Ag only contacts. LEDs with the 500 °C-annealed Ag/Ru contacts show 25% higher output power (at 20 mA) than LEDs with the 500 °C-annealed Ag only contacts. X-ray photoemission spectroscopy examinations are performed to describe the improved electrical performance of the Ag/Ru contacts.  相似文献   

15.
Ni, Ni2Si and Pd contacts were prepared on n-type 4H-SiC and annealed in the temperature range of 750-1150 °C. The annealed contacts were analyzed before and after acid etching, and different features were found in unetched and etched contacts. Carbon left on the SiC surface after the acid etching of Ni2Si contacts annealed at 960 °C was highly graphitized. In nickel contacts, the graphitization of interface carbon began at 960 °C and increased after annealing at higher temperatures. In palladium contacts, the onset of the interface carbon graphitization was observed after annealing at 1150 °C. For all three types of metallization, the minimal values of contact resistivity were achieved only when the sharp first-order peak at 1585 cm−1 and distinct second-order peak at ∼2700 cm−1 related to the presence of graphitized carbon were detected by Raman spectroscopy after the acid etching of contacts. The properties of unannealed secondary contacts deposited onto etched primary contacts were similar to the properties of the primary contacts unless carbon was selectively etched. The results show that ohmic behavior of Ni-based and Pd contacts on n-type SiC originates from the formation of graphitic carbon at the interface with SiC.  相似文献   

16.
The electrical properties of different metal-CdZnTe contacts by sputtering deposition method are investigated by current-voltage. The results show that Au is the most suitable electrical contact materials, which forms the nearly ideal Ohmic contact with high resistivity p-CdZnTe crystals. Ohmicity coefficient b is the closest to 1 after 10 min annealing at 333 K, which is analyzed by current-voltage characteristics. XPS analyses show that Au atoms diffuse into CdZnTe during annealing process and Cd and Te atoms diffuse into Au contact. Diffused Au atoms do not form any compound with any element in CdZnTe crystal. PL spectra results of Au deposition on CdZnTe crystals at 10 K show that the inter-diffused donors [Au]3+ recombine with acceptors [VCd]2− during sputtering process. Meanwhile, the intensity of (Dcomplex) peak of with Au contact increases sharply in comparison with un-deposited CdZnTe crystal and donor [Au]3+ and can compensate Cd vacancy [VCd]2− wholly.  相似文献   

17.
This paper reports that highly transparent and low resistance tantalum-doped indium tin oxide (Ta-doped ITO) films contacted to p-type GaN have been prepared by the electron-beam evaporation technique. The Ta-doped ITO contacts become Ohmic with a specific contact resistance of $\sim 5.65\times 10^{ - 5}$~$\Omega \cdot$cm$^{2}$ and show the transmittance of $\sim $98% at a wavelength of 440~nm when annealed at 500~\du. Blue light emitting diodes (LEDs) fabricated with Ta-doped ITO p-type Ohmic contact layers give a forward-bias voltage of 3.21~V at an injection current of 20~mA. It further shows that the output power of LEDs with Ta-doped ITO contacts is enhanced 62% at 20~mA in comparison with that of LEDs with conventional Ni/Au contacts.  相似文献   

18.
Au contacts were deposited on bulk, n-type single-crystal ZnO at either 77 K or 300 K.The room temperature deposition produced contacts with ohmic characteristics. By sharp contrast, the cryogenic deposition produced rectifying characteristics with barrier heights around 0.4 eV. The differences in contact behavior were stable to anneal temperatures of ∼300 °C. There were no differences in near-surface stoichiometry for the different deposition temperatures, while the low temperature contacts showed a more uniform appearance. With further optimization of the pre-deposition cleaning process, this may be a useful method for engineering barrier heights on ZnO.  相似文献   

19.
20.
We have designed a promising contact scheme to p-GaN. Au/NiOx layers with a low concentration of O in NiOx are deposited on p-GaN by reactive dc magnetron sputtering and annealed in N2 and in a mixture of O2 + N2 to produce low resistivity ohmic contacts. Annealing has been studied of NiOx layers with various contents of oxygen upon the electrical properties of Au/NiOx/p-GaN. It has been found that the Au/NiOx/p-GaN structure with a low content of oxygen in NiOx layer provides a low resistivity ohmic contact even after subsequent annealing in N2 or O2 + N2 ambient at 500 °C for 2 min.Auger depth profiles and transmission electron microscopy (TEM) micrographs reveal that while annealing in O2 + N2 ambient results in reconstruction of the initial deposited Au/NiOx/p-GaN contact structure into a Au/p-NiO/p-GaN structure, annealing in N2 brings about reconstruction into Au/p-NiO/p-GaN and Ni/p-NiO/p-GaN structures. Hence, in both cases, after annealing in N2 as well as in O2 + N2 ambient, the ohmic properties of the contacts are determined by creation of a thin oxide layer (p-NiO) on the metal/p-GaN interface. Higher contact resistivities in the samples annealed in O2 + N2 ambient are most likely caused by a smaller effective area of the contact due to creation of voids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号