首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, based on the equations presented in [2], the head-on collision between two solitary waves described by the modified KdV equation (the mKdV equation, for short) is investigated by using the reductive perturbation method combined with the PLK method. These waves propagate at the interface of a two-fluid system, in which the density ratio of the two fluids equals the square of the depth ratio of the fluids. The second order perturbation solution is obtained. It is found that in the case of disregarding the nonuniform phase shift, the solitary waves preserve their original profiles after collision, which agrees with Fornberg and Whitham's numerical result of overtaking collision161 whereas after considering the nonuniform phase shift, the wave profiles may deform after collision.  相似文献   

2.
A corrected version of the Boussinesq equation for long water waves is derived and its general solution for interaction of any number of solitary waves, including head-on collisions, is given. For two solitary waves in head-on collision (which includes the case of normal reflection) the results agree with the experiments known.  相似文献   

3.
This article is devoted to the study of the propagations of the nonlinear water waves on the shear flows. Assuming μ=kh is small andε/μ 2O(1), and the base flow is uniformly sheared, the modified Boussinesq equation is obtained. We calculate propagations of the single solitary wave with vorticity Γ=0,>0 and <0. The influences of the vorticity are manifested. At the end examples of the interactions of two solitary waves, moving in opposite and the same directions, are given. Besides the phase shift, there also occur second wavelets after head-on collision. The project supported by the National Natural Science Foundation of China  相似文献   

4.
The extended Poincaré–Lighthill–Kuo (PLK) method is applied to characterize head-on collisions of solitary waves in a coupled Korteweg–de Vries (KdV) system that has multiple modes supporting solitons. As a simple physically realizable system, we investigate two coupled electrical nonlinear transmission lines (NLTLs), and the proposed method successfully leads to the collision-induced phase shifts and the wave equation that governs the dynamics of the pulses generated by colliding solitary waves.  相似文献   

5.
Upon discovering the wrongness of the statement “although this term does not cause any secularity for this order it will cause secularity at higher order expansion, therefore, that term must vanish” by Su and Mirie [4], in the present work, we studied the head-on collision of two solitary waves propagating in shallow water by introducing a set of stretched coordinates in which the trajectory functions are of order of ϵ2, where ϵ is the smallness parameter measuring non-linearity. Expanding the field variables and trajectory functions into power series in ϵ, we obtained a set of differential equations governing various terms in the perturbation expansion. By solving them under non-secularity condition we obtained the evolution equations and also the expressions for phase functions. By seeking a progressive wave solution to these evolution equations we have determined the speed correction terms and the phase shifts. As opposed to the result of Su and Mirie [4] and similar works, our calculations show that the phase shifts depend on both amplitudes of the colliding waves.  相似文献   

6.
分层流体中gKdV型孤立波的迎撞   总被引:1,自引:0,他引:1  
朱勇  戴世强 《力学学报》1992,24(1):9-18
本文采用约化摄动法和PLK方法并通过双参数摄动展开,讨论了分层流体中以推广的Korteweg-de vries方程(gKdV方程)描述的孤立波的迎撞问题,求得了二阶近似解。分析结果表明,gKdV型孤立波碰撞后保持原来的形状不变,在碰撞时最大波幅为两个来碰孤立波的最大波幅的线性叠加。  相似文献   

7.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

8.
The scope of this Note is to show the results obtained for simulating the two-dimensional head-on collision of two solitary waves by solving the Navier–Stokes equations in air and water. The work is dedicated to the numerical investigation of the hydrodynamics associated to this highly nonlinear flow configuration, the first numerical results being analyzed. The original numerical model is proved to be efficient and accurate in predicting the main features described in experiments found in the literature. This Note also outlines the interest of this configuration to be considered as a test-case for numerical models dedicated to computational fluid mechanics. To cite this article: P. Lubin et al., C. R. Mecanique 333 (2005).  相似文献   

9.
This paper is concerned with the asymptotic stability of degenerate stationary waves for viscous gases in the half space. We discuss the following two cases: (1) viscous conservation laws and (2) damped wave equations with nonlinear convection. In each case, we prove that the solution converges to the corresponding degenerate stationary wave at the rate t −α/4 as t → ∞, provided that the initial perturbation is in the weighted space L2a=L2(\mathbb R+; (1+x)a dx){L^2_\alpha=L^2({\mathbb R}_+;\,(1+x)^\alpha dx)} . This convergence rate t −α/4 is weaker than the one for the non-degenerate case and requires the restriction α < α*(q), where α*(q) is the critical value depending only on the degeneracy exponent q. Such a restriction is reasonable because the corresponding linearized operator for viscous conservation laws cannot be dissipative in L2a{L^2_\alpha} for α > α*(q) with another critical value α*(q). Our stability analysis is based on the space–time weighted energy method in which the spatial weight is chosen as a function of the degenerate stationary wave.  相似文献   

10.
This paper presents an experimental method for measuring the attenuation and the velocity of longitudinal ultrasonic waves propagating through flat epoxy polymer samples. The study takes place in the first phase of epoxy polymer's polymerization, where these materials pass slowly from liquid state to the solid state. For this purpose an experimental setup was introduced, suitable for the accurate evaluation of the acoustic properties Δα andc e , when the epoxy polymers are in their first phase of polymerization, while they are cured for 24 hours at room temperature (20°C). The ultrasonic method used is the pulse echo-through transmission technique. From the variation ofc e and Δα during the first phase of epoxy polymers curing, the three characteristic states: liquid, semi-solid and solid, are clearly determined. It is also observed that plasticizer reduces the testability and the semi-solid state shows greater attenuation than either the liquid or the solid state.  相似文献   

11.
In this paper, on the basis of Boussinesq’s shallow water theory, we establish the basic equations governing the motion of a stratified fluid, a kind of the generalized Boussinesq equations. And then by way of them, we study the weak interaction of two pairs of obliquely colliding solitary waves, give the second-order approximate solutions for wave profiles and maximum amplitudes, as well as conclude that when the included angle between the directions of propagation of impinging solitary waves is less than 120°, the effect of oblique interaction is stronger than that of the head-on one, but when the angle concerned is greater than 120°, the former is slightly weaker than the latter.  相似文献   

12.
In this paper, we consider the higher order Boussinesq (HBq) equation which models the bi-directional propagation of longitudinal waves in various continuous media. The equation contains the higher order effects of frequency dispersion. The present study is devoted to the numerical investigation of the HBq equation. For this aim a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge–Kutta method in time is constructed. The convergence of semi-discrete scheme is proved in an appropriate Sobolev space. To investigate the higher order dispersive effects and nonlinear effects on the solutions of HBq equation, propagation of single solitary wave, head-on collision of solitary waves and blow-up solutions are considered.  相似文献   

13.
In this paper, using the reductive perturbation method combined with the PLK method and two- parameter expansions, we treat the problem of head- on collision between two solitary waves described by the generalized Korteweg- de Vries equation (the gKdV equation) and obtain its second-order approximate solution. The results show that after the collision, the gKdV solitary waves preserve their profiles and during the collision, the maximum amplitute is the linear superposition of two maximum amplitudes of the impinging solitary waves.  相似文献   

14.
ROSSBY WAVES WITH THE CHANGE OF β   总被引:3,自引:0,他引:3  
In this paper, the change of the Rossby parameter β with latitude is considered and the parameter γ≡-dβ/dy=2sinφ/a2 is introduced and the β-plane approximation is extended into f=f00y-γ0y2/2 which includes the parameter γ. Such approximation closes further to practice especially in the high latitude regions.We give emphasis to the research of the effect of the parameter γ on the Rossby waves. It is seen that the effect of the parameter γ is remarkable in the high latitude regions. It can produce the Rossby waves caused by the pure parameter γ. And the phase speed formula of Rossby waves with the change of ft is generally given, which is degenerated into the well-known Rossby formula when γ0=0. The researches also point out that when the change of β is regarded, even if the basic current u is a linear function of y the unstable modes can also take place. However,the parameter γ usually plays a stable part in the Rossby waves and it does affect the longitudinal scale and the structure of constant phase lines(trough-ridge lines)of Rossby waves and slow down the growing or decaying of Rossby waves.  相似文献   

15.
Head-on Collision of a Detonation with a Planar Shock Wave   总被引:1,自引:0,他引:1  
The phenomenon that occurs when a Chapman–Jouguet (CJ) detonation collides with a shock wave is discussed. Assuming a one-dimensional steady wave configuration analogous to a planar shock–shock frontal interaction, analytical solutions of the Rankine–Hugoniot relationships for the transmitted detonation and the transmitted shock are obtained by matching the pressure and particle velocity at the contact surface. The analytical results indicate that there exist three possible regions of solutions, i.e. the transmitted detonation can have either strong, weak or CJ solution, depending on the incident detonation and shock strengths. On the other hand, if we impose the transmitted detonation to have a CJ solution followed by a rarefaction fan, the boundary conditions are also satisfied at the contact surface. The existence of these multiple solutions is verified by an experimental investigation. It is found that the experimental results agree well with those predicted by the second wave interaction model and that the transmitted detonation is a CJ detonation. Unsteady numerical simulations of the reactive Euler equations with both simple one-step Arrhenius kinetic and chain-branching kinetic models are also carried out to look at the transient phenomena and at the influence of a finite reaction thickness of a detonation wave on the problem of head-on collision with a shock. From all the computational results, a relaxation process consisting of a quasi-steady period and an overshoot for the transmitted detonation subsequent to the head-on collisions can be observed, followed by the asymptotic decay to a CJ detonation as predicted theoretically. For unstable pulsating detonations, it is found that, due to the increase in the thermodynamic state of the reactive mixture caused by the shock, the transmitted pulsating detonation can become more stable with smaller amplitude and period oscillation. These observations are in good agreement with experimental evidence obtained from smoked foils where there is a significant decrease in the detonation cell size after a region of relaxation when the detonation collides head-on with a shock wave.  相似文献   

16.
The interfacial crack between two dissimilar elastic-plastic materials   总被引:1,自引:0,他引:1  
This paper presents an exact asymptotic analysis on the interfacial crack between two dissimilar elastic-plastic materials. These two materials have identical hardening exponent (n 1=n 2) but different hardening coefficient (α1 ≠ α2). Two groups of the near-crack-tip fields have been obtained, which not only satisfy the continuity of both tractions (σθ, τ) and displacements (u r ,u θ) on the interface, but also meet the traction free conditions on the crack faces. The first group of fields have the mode mixityM P quite close toM P =1 (MODE I) within the whole range 0 ≤ α12 < ∞. As for the second group of fields, which is only obtained within the narrow range 0.9 ≤ α12 ≤ 1, it is found that the mode mixity changes sharply with the ratio value α12. The project supported by National Natural Science Foundation of China  相似文献   

17.
The collision outcomes of immiscible drops with large surface tension difference, namely, a water drop and a diesel oil drop, were observed experimentally. In a near head-on collision between immiscible drops with large surface tension difference, an “overlaying” action for the drop of the smaller surface tension, i.e., the diesel oil drop, to go around the surface of the drop of the larger surface tension, i.e., the water drop, occurs during the collision. This overlaying action reduces the reflex energy for head-on collisions, making reflex separation more difficult to occur. At the same time, due to the immiscibility, the liquid bridge during stretching separation becomes narrower, which makes stretching separation easier to happen. No coalescence could be observed for a collision of Weber number greater than 60. In addition, compound drops are produced frequently.  相似文献   

18.
Youhe Zhou 《力学快报》2011,1(4):041006
This paper presents a theoretical model on the normal (head-on) collision between soft-spheres on the basis of elastic loading of the Hertz contact for compression process and a nonlinear plastic unloading for restitution one, in which the parameters all are determined in terms of the material and geometric ones of the spheres, and the behaviors of perfect elastic, inelastic, and perfect plastic collisions appeared in the classical mechanics are fully described once a value of coefficient of restitution is specified in the region of 0 ≤ ε ≤ 1. After an empirical formula of the coefficient of restitution dependent on the impact velocity is suggested to fit the existing experimental measurements by means of the least square method, the predictions of the dependency and the collision duration are in well quantitative agreement with their experimental measurements. It is found that the measurable quantities are dependent on both the impact velocity and the parameters of spheres. Following this model, finally, an approach to determine the spring coefficient in the linear viscoelastic model of the collision is also displayed. These results obtained here will be significantly beneficial for the applications where a collision model is requested in the simulations of relevant grain flows and impact dynamics etc..  相似文献   

19.
20.
A general solution of the Boussinesq equation is presented which solves the problem of interaction of any number of right-going and left-going solitary waves. The solution relies on the exact solution of Gardner, Greene, Kruskal, and Miura (1967), and has the same degree of accuracy as that solution, but has a wider scope of application. It is much simpler than, but as accurate as, Hirota's exact solution (1973) of the Boussinesq equation, to which the present solution is compared for the simplest case of two solitary waves in head-on collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号