首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of fully relaxed, full-potential electronic structure calculations for the new superconductor MgB (2), and BeB (2), NaB (2), and AlB (2), using density-functional-based methods. Our results, described in terms of (i) density of states (DOS), (ii) band structure, and (iii) the DOS and the charge density around the Fermi energy E(F), clearly show the importance of B p-band for superconductivity. In particular, we show that around E(F), the charge density in MgB (2), BeB (2), and NaB (2) is planar and is associated with the B plane. For BeB (2) and NaB (2), we find significant differences in their electronic structure due to differences in the number of valence electrons and the lattice constants a and c.  相似文献   

2.
林峰  李缵轶  王山鹰 《物理学报》2009,58(12):8544-8548
基于密度泛函理论研究了纤铁矿和锐钛矿型TiO2纳米管的原子结构、稳定性、Young模量以及电子能带结构.计算结果显示:在纳米管直径较小时,锐钛矿型TiO2纳米管的稳定性要好于纤铁矿型纳米管,随着管径的增大,纤铁矿型纳米管变得比锐钛矿型纳米管要更稳定.纤铁矿型TiO2纳米管具有比锐钛矿型纳米管更大的Young模量,力学性能比较优异.另外,通过对电子能带结构的研究发现,手性对TiO2纳米管的电子结构影响较大,纤铁矿(0,n)型和锐钛矿(n,0)型纳米管为间接带隙半导体,而纤铁矿(n,0)型和锐钛矿(0,n)型纳米管却具有直接带隙. 关键词: 2纳米管')" href="#">TiO2纳米管 Young模量 间接带隙 直接带隙  相似文献   

3.
We investigate the structures and properties of boron/nitrogen co-doped carbon nanotube with water molecules adsorbing. The electronic and optical properties of the systems are calculated by using the first-principles theory in detail. The results reveal that the doped nanotubes show hydrophilic behavior when the oxygen atoms are close to the nanotubes. The Mulliken charges redistribute and transfer between the doped carbon nanotubes and the water molecules. The band gaps of the nanotubes vary with the positions of H2O. The positions and intensities of the reflectivity peaks are affected by the distributions of boron/nitrogen atoms and the positions of water molecules. The investigations are beneficial to further biological applications of co-doped nanotubes.  相似文献   

4.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

5.
We investigated the interactions between two different geometrical configurations of single-walled carbon nanotubes and boron atoms using first-principle calculations within the framework of the density functional theory. With the aid of ab initio calculations, we introduced a new type of toxic gas sensor that can detect the presence of CO, NO and H2 molecules. We proved that the dopant concentration on the surface of the nanotube plays a crucial role in the sensitivity of this device. Furthermore, we showed that small concentrations of dopants can modify the transport and electronic properties of the single-walled carbon nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with boron atoms. The emerged new energy level near the Fermi level upon boron doping clearly indicates the coupling between the p orbital of the boron atom and the large p bond of the carbon nanotube. We also predicted a weak hybridization between the boron atoms and the nanotube for the valence-band edge states; this weak coupling leads to conducting states around the band gap.  相似文献   

6.
Structural and electronic properties as well as the stability of MoS2 nanotubes are studied using the density-functional-based tight-binding method. It is found that MoS2 zigzag ( n,0) nanotubes exhibit a narrow direct band gap and MoS2 armchair ( n,n) possess a nonzero moderate direct gap. Interestingly, the ( n,n) tubes show a small indirect gap similar to the direct gap of ( n,0) nanotubes. Simulated electron diffraction patterns confirm the existence of armchair and zigzag disulphide nanotubes. The structure of the MoS2 nanotube tips is explained by introducing topological defects which produce positive and negative curvature.  相似文献   

7.
姜艳  刘贵立 《物理学报》2015,64(14):147304-147304
碳纳米管作为最先进的纳米材料之一, 在电子和光学器件领域有潜在的应用前景, 因此引起了广泛关注. 掺杂、变形及形成超晶格为调制纳米管电子、光学性质提供了有效途径. 为了理解相关机理, 利用第一性原理方法研究了不同剪切形变下扶手椅型硼氮交替环状掺杂碳纳米管超晶格的空间结构、电子结构和光学性质. 研究发现, 剪切形变会改变碳纳米管的几何结构, 当剪切形变大于12%后, 其几何结构有较大畸变. 结合能计算表明, 剪切形变改变了掺杂碳纳米管超晶格的稳定性, 剪切形变越大, 稳定性越低. 电荷布居分析表明, 硼氮掺杂碳纳米管超晶格中离子键和共价键共存. 能带和态密度分析发现硼氮交替环状掺杂使碳纳米管超晶格从金属转变为半导体. 随着剪切形变加剧, 纳米管超晶格能隙逐渐减小, 当剪切形变大于12%后, 碳纳米管又从半导体变为金属. 在光学性能中, 剪切形变的硼氮掺杂碳纳米管超晶格的光吸收系数及反射率峰值较未受剪切形变的均减小, 且均出现了红移.  相似文献   

8.
We investigated the effect of uniaxial tensile strength on a pristine carbon nanotube, boron-doped carbon nanotube, nitrogen-doped carbon nanotube and co-doped carbon nanotube with boron and nitrogen atoms. To achieve our goal, we performed our calculations with the aid of density functional theory. We studied the changes in the electrical properties after the atomic substitution of a carbon atom by boron, nitrogen, and boron and nitrogen in pristine carbon nanotubes. We also applied uniaxial tensile strength to doped structures as well as pristine one. In addition to studying the band gap, we studied the changes in the Fermi energy, valence bands, and conduction bands. We found that defects as well as stress and strain play a crucial rule on modifying the electrical properties of carbon nanotubes.  相似文献   

9.
Density Functional Theory is used to investigate the effect of altering the B/N ratio and carbon doping on the electronic and magnetic structure of zigzag, (7, 0) and armchair (5, 5) boron nitride nanotubes. The calculations indicate that increasing the boron content relative to the nitrogen content significantly reduces the band gap to a value typical of a semiconductor. Calculations of carbon doped semiconducting BN tubes, which have more boron atoms than nitrogen atoms have a net spin and a difference in the density of states at the valence band between the spin up and spin down state.  相似文献   

10.
朱学文  徐利春  刘瑞萍  杨致  李秀燕 《物理学报》2015,64(14):147103-147103
共掺杂是提高二氧化钛纳米管可见光催化性能的一种有效方式. 采用基于密度泛函理论的第一性原理方法, 研究了N单掺杂、F单掺杂及N-F共掺杂二氧化钛纳米管的原子结构、电子性质和光学性质. 计算结果表明, 相比N单掺杂和F单掺杂, N-F共掺杂二氧化钛纳米管的形成能更低, 掺杂后的体系热力学稳定性更好. 此外, 相比未掺杂时的带隙, N-F共掺杂后体系的带隙变化最多, 减少了0.557 eV, 而这主要源于价带顶附近的杂质能级的贡献. 此外, 通过分析掺杂后的光催化活性发现, N-F共掺杂时纳米管的还原性和氧化性都有所降低, 但并没有丧失活性, 并且光吸收谱表明, 共掺杂体系的红移现象最为明显. 因此, N-F共掺杂可有效提高二氧化钛纳米管可见光的光催化性能.  相似文献   

11.
The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube.  相似文献   

12.
The electrical properties and NMR parameters of the pristine and Ga-doped structures of two representative (8, 0) zigzag and (4, 4) armchair of boron phosphide nanotubes (BPNTs) have been investigated. The structural geometries of above nanotubes have been allowed to relax by optimization and then the isotropic and anisotropic chemical shielding parameters (CSI and CSA) of 11B and 31P have been calculated based on DFT theory. The results reveal that the influence of Ga-doping was more significant on the geometries of the zigzag model than the armchair one. The difference of band gap energies between the pristine and Ga-doped armchair BPNTs was larger than the zigzag model. Significant differences of NMR parameters of those nuclei directly contributed to the Ga-doping atoms have been observed.  相似文献   

13.
In this work, we have theoretically studied the changes in electrical properties of three different geometrical structures of carbon nanotubes upon co-doping them with boron and nitrogen atoms. We applied different doping mechanisms to study band structure variations in the doped structures. Doping carbon nanotubes with different atoms will create new band levels in the band structure and as a consequence, a shift in the Fermi level occurs. Whereas, filling up the lowest conduction/ upper valence bands created an up/ downshift in the Fermi level. Moreover, dopants concentration and dopants position play a critical rule in defining the number of new band levels. These new band levels in the band gap region represented as new peaks appeared in the density of states. These new bands are solely attributed to co-doping carbon nanotubes with boron and nitrogen atoms.  相似文献   

14.
张影  曹觉先  杨薇 《中国物理 B》2008,17(5):1881-1886
We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an {sp}2-to-{sp}3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes.  相似文献   

15.
Exciton effects are studied in single-wall boron-nitride nanotubes. The Coulomb interaction dependence of the band gap, the optical gap, and the binding energy of excitons are discussed. The optical gap of the (5,0) nanotube is about 6 eV at the on-site interaction U=2t with the hopping integral t=1.1 eV. The binding energy of the exciton is 0.50 eV for these parameters. This energy agrees well with that of other theoretical investigations. We find that the energy gap and the binding energy are almost independent of the geometries of nanotubes. This novel property is in contrast with that of the carbon nanotubes, which show metallic and semiconducting properties depending on the chiralities.  相似文献   

16.
We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H 2 O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H 2 O molecules and the ZnO nanotube, and adsorption energies of the H 2 O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H 2 O molecules adsorbed on its surface are calculated, the results of which showed that the H 2 O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H 2 O molecules by applying bias voltages.  相似文献   

17.
We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in (9,9) carbon nanotube while endothermic in (8,8) and (7,7) carbon nanotubes. When the SiNT is inserted into (9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@(9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and (9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@(7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.  相似文献   

18.
Planar and nanotubular structures that are based on boron and nitrogen and consist of tetragons, hexagons, and octagons are considered. By analogy with carbon nanoobjects of the same topology, these structures are referred to as Haeckelites. The geometric, electronic, and energy properties are thoroughly investigated for two variants of the regular mutual arrangement of the polygons. It is established that planar and nanotubular BN structures of the Haeckelite type are dielectrics with a band gap E g ∼ 3.2–4.2 eV, which is less than the band gap E g for BN nanotubes consisting only of hexagons. The cohesive energy of the BN nanotubes under investigation exceeds the cohesive energy of BN hexagonal nanotubes by 0.3 eV/atom.  相似文献   

19.
The nanotube with open edges is an excellent candidate for designing efficient tip for atomistic scanning probes or field emission display (FED) devices. In the present work, we have studied the functionalization of an open-ended boron nitride nanotube (BNNT) with a series of transition metal rings and the effects on the properties of open-ended BNNT through density functional theory (DFT) calculations. The results show that the TM-BNNT complexes are energetically favorable. Moreover, it is found that the functionalization (a) significantly decreases the band gap of BNNT to different degrees, which might effectively modify the electronic properties of the open-ended BNNT; and (b) efficiently lowers the work function, which might improve the field emission properties. Our results might be helpful not only to design specific BNNT-based tips but also to further discuss the chemical vapor deposition (CVD) growth of BNNT on nanoparticles.  相似文献   

20.
Via the example of a (5, 5) boron-nitrogen armchair nanotube, the influence of isoelectronic substitutional impurities on the electronic structure of BN nanotubes has been investigated with the use of linear augmented cylindrical waves. The treatment is based on the local density approximation and the muffin-tin approximation for the electron potential. In this method, the electronic spectrum of a system is governed by the free motion of electrons in the interatomic space between cylindrical barriers and the electron scattering on atomic centers. It has been found that the substitution of one atom of N by P leads to the splitting of all twofold degenerate bands by 0.2 eV on average, a decrease in the energy gap from 3.5 to 2.8 eV, the separation of the s(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity π(P) and π*(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of an As atom on the electronic structure of (5, 5) BN nanotubes is qualitatively similar to the case of phosphorus, but the energy gap is smaller by 0.5 eV. The optical gap in the nanotubes is closed due to the effect of the Sb atom impurity. A substitution of one B atom by an Al atom results in the strong perturbation of the band structure and the energy gap in this case is only 1.6 eV in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. In the latter case, the energy gap is 2.9 eV. The above effects can be detected by the optical and photoelectron spectroscopy methods, as well as by measuring the electrical properties of the nanotubes. They can be used to create electronic devices based on boron-nitrogen nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号