首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by a desire to find a useful 2d Lorentz-invariant reformulation of the AdS5×S5 superstring world-sheet theory in terms of physical degrees of freedom we construct the “Pohlmeyer-reduced” version of the corresponding sigma model. The Pohlmeyer reduction procedure involves several steps. Starting with a coset space string sigma model in the conformal gauge and writing the classical equations in terms of currents one can fix the residual conformal diffeomorphism symmetry and kappa-symmetry and introduce a new set of variables (related locally to currents but non-locally to the original string coordinate fields) so that the Virasoro constraints are automatically satisfied. The resulting equations can be obtained from a Lagrangian of a non-Abelian Toda type: a gauged WZW model with an integrable potential coupled also to a set of 2d fermionic fields. A gauge-fixed form of the Pohlmeyer-reduced theory can be found by integrating out the 2d gauge field of the gauged WZW model. The small-fluctuation spectrum near the trivial vacuum contains 8 bosonic and 8 fermionic degrees of freedom with equal mass. We conjecture that the reduced model has world-sheet supersymmetry and is ultraviolet-finite. We show that in the special case of the AdS2×S2 superstring model the reduced theory is indeed supersymmetric: it is equivalent to the N=2 supersymmetric extension of the sine-Gordon model.  相似文献   

2.
C S Warke 《Pramana》1985,24(1-2):69-76
Isobaric degrees of freedom δδ in nuclei are determined from the quark cluster model of a nucleus. These additional degrees of freedom are brought in by the coloured quark exchange between different nucleon clusters present in nuclei. They are found to be important in the region of momentum transfer near 3.5 fm−1. The mass dependence of these isobaric degrees of freedom in nuclei turns out to beA 5/6.  相似文献   

3.
In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of AdS 5×S5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order N=∞ phase transition with the black hole–string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of N-2/3. The N=∞ transition now becomes a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but finite N. Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black hole.  相似文献   

4.
A system with constraints is considered: a string theory whose Lagrangian is thenth power of the Gauss curvature of a space-time manifold (nN,n>1). The problem is solved exactly because after the constraints are utilized we deal with a variational problem with a trivial Lagrangian, i.e., its Euler-Lagrange equations are satisfied identically. One can say that the constraints “swallow” all dynamical degrees of freedom of the field theory. The investigation is a continuation of the 1989 work of Burlankov and Pavlov, who solved the problem of two-dimensionalR 2-gravitation under the gauge γ=1.  相似文献   

5.
The possibility that pairs of quarks will form diquark clusters in the regime above deconfinement transition for hadron matter at finite density is revisited. Here we present the results on the diquark-diquark (dq-dq) interaction in the framework of constituent quark model taking account of spin, isospin and color degrees of freedom in the spirit of generalized Pauli principle. By constructing the appropriate spin and color states of the dq-dq clusters we compute the expectation values of the interaction Hamiltonian involving pairwise quark—quark interaction. We find that the effective interaction between two diquark clusters is quite sensitive to different configurations characterized by color and spin states, obtained after the coupling of two diquark states. The value of the coupling parameter for a particular color—spin state, i.e., -3, 1 is compared to the one obtained earlier by Donoghue and Sateesh,Phys. Rev. D38, 360 (1988) based on the effective Φ4-theory. This new value of λ derived for different color-spin dq-dq states, may lead to several important implications in the studies of diquark star and diquark gas.  相似文献   

6.
We present bulk viscous Bianchi type V cosmological models with time-dependent cosmological term Λ. Exact solutions of Einstein field equations have been obtained by assuming shear scalar σ proportional to volume expansion θ. The coefficient of bulk viscosity is taken to be power function of energy density ρ or volume expansion θ. In these models cosmological term Λ come out to be negative. It is found that models obtained are expanding, shearing and non-rotating. They do not approach isotropy for large values of time t. Some observational parameters for the model have also been discussed.  相似文献   

7.
A model of a cloud formed by massive strings is used as a source of LRS Bianchi type-II with time-decaying vacuum energy density Λ. To construct string cosmological models, we have used the energy–momentum tensor for such strings as formulated by Letelier (1983). The high nonlinear field equations have been solved for two types of strings: (i) massive string and (ii) Nambu string. The expansion θ in the model is assumed to be proportional to the shear σ. This condition leads to A = βB m , where A and B are the metric coefficients, m is a constant and β is an integrating constant. Our models are in accelerating phase which is consistent with the recent observations of supernovae type-Ia. The physical and geometrical behaviour of these models are also discussed.  相似文献   

8.
A model for verifying and developing the fundamental ideas underlying the ergodic hypothesis is proposed. The model describes the dynamics of the spin subsystem formed by impurity charges with spin I and a small g factor in a crystal immersed in a strong constant external magnetic field under conditions where the spin system of the nuclei in the crystal is isolated from the other degrees of freedom. The additive integral of motion is the projection of the total spin of the subsystem onto the external field. Attention is focused mainly on the case of I=1/2. It is shown that the ergodic hypothesis holds if the correlation radius is finite in the initial state and that the ergodic hypothesis is violated if the initial state is sharply localized or has global correlation. The nonergodicity of the 8Li− 6Li spin subsystem, which is a convenient object for experimental investigations of spin dynamics, is revealed. An estimate is obtained for the time for transition from a sharply localized disturbance of the canonical distribution to a quasiequilibrium state. Zh. éksp. Teor. Fiz. 116, 1398–1418 (October 1999)  相似文献   

9.
Motivated by the recent proposition by Buniy, Hsu, and Zee with respect to discrete spacetime and finite spatial degrees of freedom of our physical world with short- and long-distance scales, l P and L, we reconsider the Lorentz-covariant Yang's quantized spacetime algebra (YSTA), which is intrinsically equipped with two such kinds of scale parameters, λ and R. In accordance with their proposition, we find the so-called contracted representation of YSTA with finite spatial degrees of freedom associated with the ratio R/λ, which gives a possibility of the divergence-free noncommutative field theory on YSTA. The canonical commutation relations familiar in the ordinary quantum mechanics appear as the cooperative Inonu-Wigner's contraction limit of YSTA, λ → 0 and R → ∓.  相似文献   

10.
A derivation of the quantum Boltzmann equation is given for identical particles with internal degrees of freedom. It is shown that the off-diagonal (with respect to the internal degrees of freedom) term of the equation contains an energy pole term, which is not present in the most commonly used kinetic equation, known as the Waldmann-Snider equation. The physical conditions underlying the occurrence of the pole term in the quantum kinetic equation are analyzed. Zh. éksp. Teor. Fiz. 111, 831–837 (March 1997)  相似文献   

11.
12.
We explain Sklyanin's separation of variables in geometrical terms and construct it for Hitchin and Mukai integrable systems. We construct Hilbert schemes of points on T *Σ for Σ=C, C * or elliptic curve, and on C 2/Γ and show that their complex deformations are integrable systems of Calogero–Sutherland–Moser type. We present the hyperk?hler quotient constructions for Hilbert schemes of points on cotangent bundles to the higher genus curves, utilizing the results of Hurtubise, Kronheimer and Nakajima. Finally we discuss the connections to physics of D-branes and string duality. Received: 2 November 2000 / Accepted: 7 May 2001  相似文献   

13.
Thesdg interacting boson model (sdgIBM), which includes monopole (s), quadrupole (d) and hexadecupole (g) degrees of freedom, enables one to analyze hexadecupole (E4) properties of atomic nuclei. Various aspects of the model, both analytical and numerical, are reviewed emphasizing the symmetry structures involved. A large number of examples are given to provide understanding and tests, and to demonstrate the predictiveness of thesdg model. Extensions of the model to include proton-neutron degrees of freedom and fermion degrees of freedom (appropriate for odd mass nuclei) are briefly described. A comprehensive account ofsdgIBM analysis of all the existing data on hexadecupole observables (mainly in the rare-earth region) is presented, includingβ 4 (hexadecupole deformation) systematics,B(IS4; 0 GS + →4 γ + ) systematics that give information about hexadecupole component in γ-vibration,E4 matrix elements involving few low-lying 4+ levels,E4 strength distributions and hexadecupole vibrational bands in deformed nuclei. The survey of literature for this review was concluded in December 1991.  相似文献   

14.
15.
In this paper we have investigated bulk viscous fluid plane symmetric dust magnetized string cosmological model. To get a deterministic model, it is assumed that ε=λ, and a relation between metric potential B=RA n . The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.  相似文献   

16.
We try to find a possible origin of the holographic principle in the Lorentz-covariant Yang’s quantized space-time algebra (YSTA). YSTA, which is intrinsically equipped with short- and long-scale parameters, λ and R, gives a finite number of spatial degrees of freedom for any bounded spatial region, providing a basis for divergence-free quantum field theory. Furthermore, it gives a definite kinematical reduction of spatial degrees of freedom, compared with the ordinary lattice space. On account of the latter fact, we find a certain kind of kinematical holographic relation in YSTA, which may be regarded as a primordial form of the holographic principle suggested so far in the framework of the present quantum theory that appears now in the contraction limit of YSTA, λ→0 and R→∞. S. Tanaka is an Em. Professor of Kyoto University.  相似文献   

17.
The Σ(E γ, Θ) asymmetry of secondary nucleons in the 6Li(γ,np)α reaction with linearly polarized photons is calculated within the model with allowance for nucleonic and mesonic degrees of freedom.  相似文献   

18.
André Nauts 《Molecular physics》2018,116(23-24):3701-3709
ABSTRACT

In quantum dynamics, physically well-adapted curvilinear coordinates are coordinates that lead to a Hamiltonian operator as separable as possible, in order to simplify the resolution of the corresponding time-independent or time-dependent Schrödinger equations. Various equivalent curvilinear expressions of the kinetic energy operator (KEO) are well known. They can be used in either an analytical or a numerical approach. The latter has the feature of allowing to straightforwardly compute the KEO in terms of sophisticated (yet easy to define) physically well-adapted curvilinear coordinates. Nevertheless, the number of terms to be computed on a full grid, scales as n2/2 (n being the number of degrees of freedom), so that, for systems with n?>?10, the memory storage of the KEO's becomes extremely demanding and therefore often unrealistic. We show here that it is possible, starting from the basic quantum expression of the KEO as a curvilinear Laplacian operator, to reduce the memory storage bottleneck by numerically computing the KEO on-the-fly, i.e. each time it is required, without computing the extrapotential term. This new approach opens the way to rigorous quantum studies of systems with many degrees of freedom. The comparison of torsional levels of methanol obtained by the present on-the-fly method with our previous results shows excellent agreement.  相似文献   

19.
20.
We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented by D. Lacoste, M. Cosentino Lagomarsino, and J.F. Joanny (EPL 77, 18006 (2007)), by providing a physical explanation for a destabilizing term proportional to k 3 in the fluctuation spectrum, which we relate to a nonlinear (E2) electrokinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives the flow along the field axis toward surface protrusions; in contrast, we predict “reverse” ICEO flows around driven membranes, due to curvature-induced tangential fields within a nonequilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号