首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
质子交换膜燃料电池气体扩散层的研究进展   总被引:5,自引:0,他引:5  
气体扩散层在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用。本文对气体扩散层的组成、制备方法及参数优化的实验研究现状进行了综述,介绍了现有的气体扩散层性质的各种表征方法,指出了研究中存在的问题,提出了气体扩散层的进一步改进方向。  相似文献   

2.
为实现质子交换膜燃料电池的高性能(高功率密度或大电流密度)、低成本(低铂载量)、长寿命发电,人们尝试在燃料电池的核心部件膜电极结构中引入梯度化设计的概念。梯度化膜电极包括膜电极中各组件的梯度化:气体扩散层的PTFE含量与孔隙率的梯度化,催化层的催化剂与Nafion用量的梯度化以及微孔层的疏水性与孔隙率的梯度化。梯度化膜电极中催化剂分布、孔隙率分布、亲/疏水性分布合理,具有良好的三相反应界面以及质子、电子、反应气体、水等多相物质高效传输通道,从而能满足在低铂载量、低加湿以及高电流密度条件下高性能稳定工作。本文整理了近几年来有关燃料电池梯度化膜电极研究的相关文献,梳理了梯度化膜电极研究发展脉络,归纳总结了各种梯度化膜电极的制备方法、性能以及构效关系,并展望了梯度化膜电极下一步研究方向,对高性能、低成本、长寿命的燃料电池开发具有指导意义。  相似文献   

3.
气体扩散层在质子交换膜(PEM)水电解池中有着支撑膜组件、供给反应水、移除气体产物以及降低欧姆电阻的重要作用。PEM水电解池阳极区具有酸性、富氧且高电位的工作环境,对阳极区的气体扩散层具有严苛的要求。气体扩散层结构特性、导电性与耐腐蚀性是决定其电化学性能的关键。本文总结了可用于PEM电解池阳极气体扩散层的材料,简述了其结构特性对PEM电解池电化学性能的影响,分析了各种镀层材料在提高气体扩散层的导电性、耐腐蚀性以及电解池阳极氧析出反应(OER)性能方面的作用。最后,展望了气体扩散层在降低成本和提高电解池性能方面的研究趋势。  相似文献   

4.
高温质子交换膜燃料电池具有耐毒化,稳定性好的优势,是具有较强应用前景的一种能源转换装置。 本文制备了具有复合催化层结构的气体扩散电极,用于增强燃料电池阳极的催化性能。 在气体扩散电极中,将偏氟乙烯-六氟丙烯共聚物和聚苯基咪唑聚合物作为催化剂的粘结材料,调节了电极界面的浸润结构。 通过对电极表面形貌和润湿性的表征,发现该种结构的催化层孔隙率和粗糙度更高,双层结构的润湿性差别明显(接触角分别为149°和19°),这有利于形成稳定的三相反应界面。 测试结果表明,该种结构的催化层能够有效提高催化材料的利用效率,燃料电池对氢气燃料的峰值功率密度提高约22%。 与此同时,使用含一氧化碳质量浓度为10000和30000 mg/m3的氢气燃料,电池峰值功率密度能够分别保持82.1%和71.4%,证明该燃料电池对一氧化碳杂质保持了良好的耐毒性。  相似文献   

5.
本文采用 Fenton 试剂离线加速衰减测试考察质子交换膜燃料电池(PEMFC)催化层的化学稳定性. 在经100 h Fenton 试剂处理后,氟离子流失测试和傅里叶红外光谱表征(ATR-FTIR)证明催化层中全氟磺酸离聚物(Nafion)发生了化学降解;通过透射电镜(TEM)观察到催化层中发生了明显的 Pt 颗粒团聚和炭载体腐蚀,与TEM表征相一致,循环伏安测试(CV)表明电化学活性面积(ECSA)降低了58%,并伴随着双电层区域的明显减少;FTIR测试进一步表征了炭载体的表面状态,并没有观察到明显的含氧官能团的产生,减少的炭载体可能以CO2的形式释放出去. 全电池测试表明,自由基攻击对催化层组成和结构造成了明显损坏,显著增加了催化层中的质子传导阻力和局部气体传输阻力,导致全电池性能大幅降低.  相似文献   

6.
汪嘉澍  潘国顺  郭丹 《化学进展》2012,(10):1906-1914
膜电极组件(MEA)是质子交换膜燃料电池(PEMFC)的核心元件,而催化层是MEA的核心部分。催化层既是电化学反应的场所,同时也为质子、电子、反应气体和水提供运输通道,其结构对PEMFC的成本及性能有很大的影响。本文综述了近年来国内外催化层结构方面的研究进展,介绍了催化层中聚合物电解质(Nafion)含量、溶剂的性质和其他添加剂对MEA结构和性能的影响,MEA热压参数的研究进展以及目前常见的催化层涂布方法。  相似文献   

7.
通过测定甲醇渗透率,详细研究了阳极支撑层的聚四氟乙烯(PTFE)含量对全被动式直接甲醇燃料电池(DMFC)甲醇传质和电池性能的影响。 膜电极集合体均使用相同的阳极催化层,膜和阴极。 实验结果表明,随着阳极支撑层PTFE含量的提高,甲醇渗透速率明显减小。 其含量较高时,甲醇传质阻力较大,会导致电池在很低的电流密度下就出现传质控制区。 采用PTFE质量分数为40%的支撑层时,DMFC以9 mol/L甲醇为燃料最大功率密度可达32×10-3 W/cm2,也进一步证明了适当提高阳极支撑层的憎水性,既有助于减少甲醇的渗透,又缓解了阴极的“水淹”问题。  相似文献   

8.
本文采用CCM法(catalyst coated membrane)技术,结合单电池极化曲线、电化学阻抗谱、极限电流法和表面接触角等多种表征技术,系统研究了直接聚四氟乙烯(PTFE)分子添加以及PTFE修饰的疏水性碳(PTTE@XC72)等不同疏水化方法对质子交换膜燃料电池(PEMFC)的阴极催化层电化学性能、氧气传输阻抗和质子传输阻抗的影响。在此基础上,通过构建PTFE梯度化疏水性结构来进一步优化PEMFC的性能。结果表明,与添加PTFE@XC72相比,直接添加适量的PTFE分子对膜电极(MEA)性能提升效果更为显著,这主要与该疏水结构可在维持高速质子传导的同时,极大降低催化层的氧气传输阻抗有关。当直接添加的PTFE与催化层中碳载体的质量比为0.1时,MEA呈现最好的性能。在添加PTFE@XC72的MEA中,由于额外的碳颗粒导致催化层厚度增加,延长了反应物质的传输路径,从而使得质子传输阻抗和氧气传输阻抗均上升。在此基础上,通过在催化层不同位置直接添加PTFE构建梯度化疏水性结构。结果表明,当适量PTFE靠近催化层与气体扩散层界面分布时,MEA呈现最好的性能,峰值功率密度比未经疏水性处...  相似文献   

9.
微型质子交换膜燃料电池   总被引:2,自引:0,他引:2  
张熙贵  杨辉  夏保佳 《化学通报》2006,69(4):261-266
针对近期微能源领域对微型质子交换膜燃料电池的各种应用,特别是在移动电子产品中的应用研究日益受到重视,本文较为详细地介绍了各国、特别是美国、日本和欧洲等国家开展微型燃料电池研发的特点和趋势,并对微型质子交换膜燃料电池研发过程中存在的困难及商业化前景作了简要分析。  相似文献   

10.
质子交换膜燃料电池是最接近商业化的一种燃料电池,最有希望作为未来电动汽车的发动机,近二十年取得了长足的发展.目前限制质子交换膜燃料电池进入商业化的最主要原因是成本和寿命两大问题,寻找和开发新型材料成为解决这两大问题、推进商业化进程的必然选择,也是质子交换膜燃料电池近些年来的研究重点和热点.本文对构成质子交换膜燃料电池的...  相似文献   

11.
优化了碱性阴离子交换膜燃料电池(AAEMFC)使用的气体扩散电极(GDE),发现催化层中PTFE含量与催化剂担载量对电池性能与其电化学动力学特征影响很大.采用i-V曲线,开路电压,电池内阻与在线的电化学阻抗谱与动力学分析,评估了所制GDE的电化学性能.在所研究的AAEMFC电极催化层中,PTFE的最佳含量是20%,Pt载量对膜电极三相界面、催化层导电性与催化剂利用率的影响极大.当制备的GDE催化层中Pt/C的Pt载量为1.0mg/cm2,PTFE含量为20%时,AAEMFC的峰电流密度在50oC达到了213mW/cm2.兼顾Pt催化剂的利用率与成本,在没有明显影响电池性能的情况下,Pt的担载量可降至0.5mg/cm2.  相似文献   

12.
A steady-state, one-dimensional numerical model based on cylindrical electrode structure is presented to analyze the performance of the ordered cathode catalyst layer in Proton Exchange Membrane Fuel Cells. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration, oxygen diffusion in the cylindrical electrolyte and the gas pores, oxygen distribution at the gas/electrolyte interface. The simulation results reveal that ordered catalyst layers have better performance than conventional catalyst layers due to the improvements of mass transport and the uniformity of the electrochemical reaction rate across the whole width of the catalyst layer. The influences of oxygen diffusivity in gas phase and electrolyte, and the proton conductivity have been shown. The limitation by oxygen diffusion in gas phase drives the active region of the catalyst layer to the catalyst layer/gas diffuser interface. The limitation by proton migration confines the active region of the catalyst layer to the membrane/catalyst layer interface. The limitation due to oxygen diffusion in electrolyte film maintains the uniform distribution of the active region throughout the ordered catalyst layer.  相似文献   

13.
Due to the need for clean energy, the development of an efficient fuel cell technology for electricity generation has received considerable attention. Much of the current research efforts have investi‐gated the materials for and process development of fuel cells, including the optimization and simpli‐fication of the fuel cell components, and the modeling of the fuel cell systems to reduce their cost and improve their performance, durability and reliability to enable them to compete with the con‐ventional combustion engine. A high temperature proton exchange membrane fuel cell (HT‐PEMFC) is an interesting alternative to conventional PEMFCs as it is able to mitigate CO poisoning and water management problems. Although the HT‐PEMFC has many attractive features, it also possesses many limitations and presents several challenges to its widespread commercialization. In this re‐view, the trends of HT‐PEMFC research and development with respect to electrochemistry, mem‐brane, modeling, fuel options, and system design were presented.  相似文献   

14.
Lattice Boltzmann method (LBM) is used to investigate liquid water transport and distribution in a porous gas diffusion layer (GDL). The GDL with microscopic porous structures is obtained from three-dimensional reconstruction using the stochastic method, and its macroscopic transport properties including permeability and effective diffusivity are numerically predicted which agree well with the existing experimental results. Simulation results show that liquid water transport mechanism in the GDL is capillary fingering and liquid water pathway is interconnected, which confirms the previous experimental results in literature. Further, effects of GC wettability are explored and it is found out that a hydrophilic GC leads to less liquid water accumulated in the GDL compared with a hydrophobic GC. In addition, effects of GDL wettability on liquid water distribution are explored. Simulation results show that PTFE content itself cannot determine liquid water distribution inside the GDL and detailed distributions of hydrophobic and hydrophilic regions within the GDL also play an import role. Moreover, a hydrophilic GDL is more beneficial for reactant transport than a hydrophobic GDL if liquid water presents as separated droplets or films in the GDL.  相似文献   

15.
Previously, mathematical modeling of a proton exchange membrane fuel cell has failed to precisely predict the performance in low relative-humidity operations. Herein, we report the fit parameters for water-uptake isotherm of the catalyst layer based on experimental measurements of dynamic vapor-sorption (DVS) technique. From the DVS measurement, it is revealed that the Nafion ionomer in the catalyst layer holds approximately 2.94 times lower water uptake than the Nafion membrane. By integrating this relation to the macroscopic model, the performance decrease due to the anode dehydration is appropriately captured relative to the previous model. Influences of the relative humidity on cell performance have been further investigated to correct the misguided prediction from the previous model.  相似文献   

16.
Polybenzimidazole (PBI)/imidazole (Im) hybrid membranes were prepared from an organosoluble, fluorine-containing PBI with Im. The thermal decomposition of the PBI/Im hybrid membranes occurred at about 160 °C. The conductivities of the acid doped PBI/Im hybrid membranes increased with both the temperature and the Im content. The conductivity of acid doped PBI-40Im (molar ratio of Im/PBI = 40) reached 3.1 × 10−3 (S/cm) at 160 °C. The proton conductivities of PBI/Im hybrid membranes were over 2 × 10−3 (S/cm) at 90 °C and 90% relative humidity. The addition of Im could reduce the mechanical properties and methanol barrier ability of the PBI membranes.  相似文献   

17.
A clear understanding and the means of prevention of electrode flooding are needed for a durable and commercially viable fuel cell product. Measurements of cell internal resistances, R, have proven useful in detecting the onset of flooding. Flooding manifests in the form of a gradual drop in the cell resistance values. For experimental purposes, self-humidified single cells of electrode area 25 cm2 were built with membrane-electrode assembly (MEAs) made from an experimental lower-Teflon-content gas diffusion layer (GDL) in the micro-porous layer and a commercial GDL sample. To facilitate flooding, favorable conditions, such as lower temperature, air flow, and pressures, were chosen. During the collection of V-I and R-I data, gradual drops in the R values were observed in the entire polarization region of the V-I plot. The drop in R values is due to the gradual increased hydration level of the Pt/C electrical double-layer interface. At the extreme polarization, the electrode hydration or the flooding of the cell interior is the maximum. Thus, resistance measurement is a viable method for assessing electrode hydration or flooding.  相似文献   

18.
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter)×10 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).  相似文献   

19.
The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier–Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas–liquid–solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.  相似文献   

20.
Performance of proton exchange fuel cells with different membrane and electrode assembly (MEA) is studied. It is shown that MEA fabricated with catalyst plasma pulverization technology has the maximum performance. Some instabilities in the cell performance, observed with time, are probably due to periodic cathode flooding. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 5, pp. 525–534. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号