首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We demonstrate ultrahigh-resolution optical coherence tomography (OCT) using continuum generation in an air-silica microstructure fiber as a low-coherence light source. A broadband OCT system was developed and imaging was performed with a bandwidth of 370 nm at a 1.3-mu;m center wavelength. Longitudinal resolutions of 2.5 microm in air and ~2 microm in tissue were achieved. Ultrahigh-resolution imaging in biological tissue in vivo was demonstrated.  相似文献   

2.
Combined confocal scanning ophthalmoscopy/en face T-scan-based ultrahigh-resolution optical coherence tomography (OCT) of the human retina in vivo is reported for the first time to our knowledge. The system uses a superluminescent diode-based broadband source, which gives an axial resolution of 3.2 microm in the retina. We demonstrate acquisition of T-scan-based OCT B-scan and simultaneous confocal/C-scan images of the human retina of large lateral size (covering a field of up to 20 degrees ) at a frame rate of 2Hz.  相似文献   

3.
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.  相似文献   

4.
Adaptive-optics ultrahigh-resolution optical coherence tomography   总被引:4,自引:0,他引:4  
Merging of ultrahigh-resolution optical coherence tomography (UHR OCT) and adaptive optics (AO), resulting in high axial (3 microm) and improved transverse resolution (5-10 microm) is demonstrated for the first time to our knowledge in in vivo retinal imaging. A compact (300 mm x 300 mm) closed-loop AO system, based on a real-time Hartmann-Shack wave-front sensor operating at 30 Hz and a 37-actuator membrane deformable mirror, is interfaced to an UHR OCT system, based on a commercial OCT instrument, employing a compact Ti:sapphire laser with 130-nm bandwidth. Closed-loop correction of both ocular and system aberrations results in a residual uncorrected wave-front rms of 0.1 microm for a 3.68-mm pupil diameter. When this level of correction is achieved, OCT images are obtained under a static mirror configuration. By use of AO, an improvement of the transverse resolution of two to three times, compared with UHR OCT systems used so far, is obtained. A significant signal-to-noise ratio improvement of up to 9 dB in corrected compared with uncorrected OCT tomograms is also achieved.  相似文献   

5.
We have developed an ultrahigh-resolution optical coherence tomographic system in which broadband continuum generation from a photonic crystal fiber is used to produce high longitudinal resolution. Longitudinal resolution of 1.3-microm has been achieved in a biological tissue by use of continuum light from 800 to 1400 nm. The system employed a dynamic-focusing tracking method to maintain high lateral resolution over a large imaging depth. Subcellular imaging is demonstrated.  相似文献   

6.
Noninvasive in vivo functional optical imaging of the intact retina is demonstrated by using high-speed, ultrahigh-resolution optical coherence tomography (OCT). Imaging was performed with 2.8 microm resolution at a rate of 24,000 axial scans per second. A white-light stimulus was applied to the dark-adapted rat retina, and the average reflectivities from different intraretinal layers were monitored as a function of time. A 10%-15% increase in the average amplitude reflectance of the photoreceptor outer segments was observed in response to the stimulus. The spatial distribution of the change in the OCT signal is consistent with an increase in backscatter from the photoreceptor outer segments. To our knowledge, this is the first in vivo demonstration of OCT functional imaging in the intact retina.  相似文献   

7.
We report on the development of a 2.5 microm core photonic crystal fiber with a substantially reduced water-peak loss around 1.38 microm, which allows extended Raman-soliton supercontinuum generation up to 1.55 microm with a cw ytterbium fiber laser pump source. The resulting broadband, high-spectral-power-density, low-coherence light source can be employed for advanced, submicrometer resolution optical coherence tomography.  相似文献   

8.
Thermal-light full-field optical coherence tomography   总被引:2,自引:0,他引:2  
We have built a high-resolution optical coherence tomography (OCT) system, based on a Linnik-type interference microscope, illuminated by a white-light thermal lamp. The extremely short coherence length of the illumination source and the large aperture of the objectives permit resolution close to 1 microm in three dimensions. A parallel detection scheme with a CCD camera provides cross-section (x-y) image acquisition without scanning at a rate of up to 50 Hz. To our knowledge, our system has the highest resolution demonstrated to date for OCT imaging. With identical resolution in three dimensions, realistic volume rendering of structures inside biological tissues is possible.  相似文献   

9.
A compact, low-cost, prismless Ti:Al2O3 laser with 176-nm bandwidth (FWHM) and 20-mW output power was developed. Ultrahigh-resolution ophthalmic optical coherence tomography (OCT) ex vivo imaging in an animal model with approximately 1.2-microm axial resolution and in vivo imaging in patients with macular pathologies with approximately 3-microm axial resolution were demonstrated. Owing to the pump laser, this light source significantly reduces the cost of broadband OCT systems. Furthermore, the source has great potential for clinical application of spectroscopic and ultrahigh-resolution OCT because of its small footprint (500 mm x 180 mm including the pump laser), user friendliness, stability, and reproducibility.  相似文献   

10.
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.  相似文献   

11.
A narrow-linewidth mid-IR source based on difference-frequency generation of an amplified 1.5 microm diode laser and a cw Tm-doped fiber laser in orientation-patterned (OP) GaAs has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 7.6-8.2 microm range with an output power of 0.5 mW. The measured characteristics of the OP-GaAs sample demonstrate a high quality of the material.  相似文献   

12.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

13.
Suizu K  Kawase K 《Optics letters》2007,32(20):2990-2992
We theoretically propose surface-emitted and collinear phase-matched terahertz (THz)-wave generation in a conventional optical fiber. The third-order nonlinear effect, four-wave mixing (FWM), is used to generate THz waves in an optical fiber. Surface-emitted THz-wave generation via FWM is realized using a single-mode fiber. Perfect phase matching is obtained at ~800 nm and 1.5 microm pumping, and it follows that third-order polarization in an optical fiber has the same phase at any point. In this situation, the optical fiber acts like a phased array antenna of the THz wave. Collinear phase-matching THz waves are obtained under the same conditions as for surface-emitted THz waves, and the THz wave is propagated in the silica cladding of the optical fiber. This is a promising method for realizing a reasonable THz-wave source.  相似文献   

14.
Submicrometer axial resolution optical coherence tomography   总被引:7,自引:0,他引:7  
Optical coherence tomography (OCT) with unprecedented submicrometer axial resolution achieved by use of a photonic crystal fiber in combination with a compact sub-10-fs Ti:sapphire laser (Femtolasers Produktions) is demonstrated for what the authors believe is the first time. The emission spectrum ranges from 550 to 950 nm (lambda(c)=725 nm , P(out)=27 mW) , resulting in a free-space axial OCT resolution of ~0.75 mum , corresponding to ~0.5 mum in biological tissue. Submicrometer-resolution OCT is demonstrated in vitro on human colorectal adenocarcinoma cells HT-29. This novel light source has great potential for development of spectroscopic OCT because its spectrum covers the absorption bands of several biological chromophores.  相似文献   

15.
We demonstrate an ytterbium gain band self-induced modulation instability laser. A highly nonlinear holey fiber is used to provide the anomalous dispersion required for bright soliton generation at 1 microm. The all-fiber integrated source yields a 40 GHz train of 4 ps pulses at a wavelength of 1064 nm.  相似文献   

16.
Palm P  Hanke D  Urban W  Mürtz M 《Optics letters》2001,26(9):641-643
We present an ultrahigh-resolution saturation spectrometer based on a line-tunable carbon monoxide laser near 60 THz (lambda = 5 microm). A spectral resolution of 14 kHz (Dnu/nu = 2.3 x 10(-10)) for CO fundamental-band transitions was achieved, which improves on earlier results by one order of magnitude. A frequency-locking scheme using tunable microwave sidebands provides tunability and absolute frequency control of the CO laser on the kilohertz. Transit-time broadening and pressure broadening of the observed transitions are significantly reduced by use of expanded laser beams in a 24-m absorption cell at pressures down to 0.0 1Pa. The new spectrometer is suitable for the study of saturation line shapes and the development of a new generation of frequency standards in the 60-THz region.  相似文献   

17.
We report on a mid-infrared (mid-IR) source consisting of an approximately 10 W average-power, linearly polarized 1.54 microm wavelength pulsed fiber source pumping an optical parametric oscillator. From this source, we obtained average power in excess of 1 W in the 3.8-4.0 microm wavelength range at a pulse repetition frequency of 100 kHz. With a slightly different setup, we also achieved an average power of 0.25 W at 4.5 microm wavelength. To our knowledge, these values represent the highest mid-IR power obtained through wavelength conversion of an eye-safe fiber source.  相似文献   

18.
A frequency comb spanning more than one octave has been achieved by injecting the second-harmonic generation (780 nm) of a mode-locked fiber laser (1.56 microm) into a photonic crystal fiber. We propose and realize a novel interferometric scheme for observing the carrier-envelope offset frequency of the frequency comb. Frequency noise has been observed on the measured carrier-envelope offset frequency, which has been confirmed to be generated in the photonic crystal fiber by comparing the measured beat frequencies between cw lasers and frequency combs before and after the photonic crystal fiber. The mode-locked fiber laser is considered to be an important candidate for the light source used in realizing a compact optical frequency measurement system including applications in the telecommunication bands.  相似文献   

19.
We report a photonic crystal fiber (PCF)-based optical coherence tomography (OCT) system, in which conventional single-mode fiber for the transmission line and the fiber coupler for the beam splitter/combiner are replaced with PCF and PCF coupler. The PCF coupler fabricated using the fused biconical tapered (FBT) method showed a nearly flat coupling ratio over a broad spectral bandwidth of 400 nm, which provided an axial resolution of 3-μm for OCT imaging. With a white-light source, the 8-μm thick air gap between two stacked cover glasses was measured, and with a conventional superluminecent diode (SLD) source, the in vitro images of rat eye and Misgurnus mizolepis skin were successfully obtained. The PCF and PCF coupler might enable a white-light as the source for the cost effective and high-resolution OCT system.  相似文献   

20.
We report single-pass difference-frequency generation of mid-infrared femtosecond pulses tunable in the 3.2-4.8 microm range from a two-branch mode-locked erbium-doped fiber source. Average power levels of up to 1.1 mW at a repetition rate of 82 MHz are obtained in the mid infrared. This is achieved via nonlinear mixing of 170 mW, 65 fs pump pulses at a fixed wavelength of 1.58 microm, with 11.5 mW, 40 fs pulses tunable in the near-infrared range between 1.05 and 1.18 microm. These values indicate that the tunable near-infrared input component is downconverted with a quantum efficiency that exceeds 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号