首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用Nd:YAG(1064nm)和准分子(KrF,248nm)两种不同波长的脉冲激光器对处于去离子水中的Ag片进行激光烧蚀,得到了不同尺寸的Ag纳米颗粒,同时,这些Ag纳米颗粒与去离子水形成了Ag纳米胶体体系。由于制备这种Ag纳米胶体的是一种物理过程,所以具有较高的纯净性。通过透射电子显微镜(TEM)对两种不同激光器制备的Ag纳米胶体的观测发现,虽然这两种Ag纳米颗粒大小尺寸不同,但都具有较好的分散性和均匀性。同时,在Raman光谱学应用方面,由于这两种Ag纳米胶体中无任何氧化剂或还原剂等外来杂质的干扰,具有非常好的纯净性,可以作为非常好的表面增强拉曼散射的增强基底,并对这两种Ag纳米颗粒与探针对羟基苯甲酸(PHBA)的吸附行为做了简要的分析。  相似文献   

2.
Laser fragmentation of Ag nanoparticles in Ag hydrosol was studied by simultaneous measurements of the transmitted fluence of the incident laser beam and the time evolution of the surface plasmon extinction (SPE) spectra. The experiments showed that the laser fragmentation in a small volume of hydrosol proceeds during first 20 pulses and then reaches saturation. The value of the transmitted fluence corresponding to saturation increases with incident pulse fluence, but the impact of the first pulse applied to the hydrosols shows an optical limitation. Fluences above 303 mJ/cm2 cause the formation of less stable, aggregating nanoparticles, while fluences below 90 mJ/cm2 do not provide sufficient energy for efficient fragmentation. The interval of fluences between 90–303 mJ/cm2 is optimal for fragmentation, since stable hydrosols constituted by small, non-aggregated nanoparticles are formed.  相似文献   

3.
Copper nanoparticles (Cu NPs) were prepared by different chemical methods possessing different sizes. While, silver nanoparticles (Ag NPs) were prepared by borohydride reduction method. The influences the changes in sizes of Ag NPs and Cu NPs were demonstrated by the absorption spectra. When Ag NPs and Cu NPs irradiated with 193 and 308 nm excimer laser, respectively; the maximum absorption decreased as the number of pulses increased up to 10 thousands pulse; due to the size reduction. The TEM photography gives good criteria about the size reduction process. Moreover, the mechanism of photofragmentation was described.  相似文献   

4.
In this work we report the results of investigation of silver (Ag) nanoparticles prepared on a silica substrate by laser ablation. Our attention was focused on the mean diameter, size distribution and optical absorption properties of nanoparticles prepared in vacuum by using different laser wavelengths. The fundamental wavelength and the second, third, and fourth harmonics of a nanosecond Nd:YAG laser were used for nanoparticles fabrication. The corresponding values of the laser fluence for each wavelength were: 0.6 J/cm2 at 266 nm, 0.8 J/cm2 at 355 nm, 2.8 J/cm2 at 532 nm, and 2 J/cm2 at 1064 nm. The Ag nanoparticles produced have mean diameters in the range from 2 nm to 12 nm as the nanoparticles’ size decreases with the decrease of the wavelength used. The presence of the Ag nanoparticles was also evidenced by the appearance of a strong optical absorption band in the measured UV-VIS spectra associated with surface plasmon resonance (SPR). A redshift and widening of the absorption peak were observed as the laser wavelength was increased. Some additional investigations were performed in order to clarify the structure of the Ag nanoparticles.  相似文献   

5.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

6.
Li  Q. S.  Liu  C. L.  Zang  L. Y.  Gong  Q. H.  Yu  X. L.  Cao  C. B. 《Laser Physics》2008,18(4):434-437
Nanoparticles of lead sulfide (PbS) have been prepared by a surfactant micelle template-inducing reaction. These nanoparticles were dispersed in ethanol and investigated for their nonlinear optical properties by nanosecond laser pulses. Broadband optical limiting effects have been observed at the wavelengths of 355, 1064, and 430 nm and every 30 nm from 470 to 620 nm. The nonlinear light-scattering process in the suspensions of PbS nanoparticles was characterized at the wavelength of 532 nm. Nonlinear absorption and nonlinear scattering were deduced to be the mechanisms for the broadband optical limiting performance. The origins of the nonlinear scattering were discussed.  相似文献   

7.
齐立涛 《中国光学》2014,7(3):442-448
通过倍频Nd:YAG固体激光的基波得到波长分别为532、355和266 nm的激光,研究了单晶硅(Si)对不同波长固体激光的吸收规律和3种不同波长激光在真空条件下烧蚀单晶Si的烧蚀特征。结果表明,单晶Si对波长为100~370 nm的紫外激光具有很好的吸收效果;在其他条件相同时,532 nm波长激光烧蚀单晶Si所需最低单脉冲能量(Ep=30 μJ)是355和266 nm波长激光烧蚀单晶Si所需最低单脉冲能量(Ep=15 μJ)的2倍;532、355和266 nm的激光烧蚀单晶Si的烧蚀阈值随着波长的变短而变小。  相似文献   

8.
Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio (θ ∼ 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios θ. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.  相似文献   

9.
Laser energy absorption results in significant heating of metallic nanoparticles and controlling the heating of nanoparticles is one of the essential stages of selective cell targeting. It is necessary to note that the laser action should be done by laser pulses with a wavelength that is strongly absorbed by the particles and it is important to select wavelengths that are not absorbed by the medium. Laser pulse duration must be chosen sufficiently short to minimize heat flow emitted from absorbing particles. Numerical calculations based on Mie theory were used to obtain the effect of laser wavelength and particle size on absorption factor for colloidal silver nanoparticles with radii between 5 and 50 nm. Calculations for acquiring temperatures under irradiations of pulsed KrF laser and pulsed Nd:YAG laser were performed. We showed that for low wavelengths of the laser, smaller nanoparticles have larger absorption efficiency compared to larger nanoparticles and in high wavelengths, temperature of all particles increased in the same way.  相似文献   

10.
Zinc oxide (ZnO) nanoparticles were synthesized using pulsed laser ablation of a Zn metal plate in deionized water without using surfactant. The beam of a Q-switched Nd:YAG laser of 1064-nm and 532-nm wavelengths at 6-ns pulse width and different fluences is employed to irradiate the solid target in water. Transmission electron microscopy images revealed that the size of the ZnO nanoparticles formed by the 532-nm wavelength laser beam is smaller than that of the nanoparticles generated by the 1064-nm wavelength laser beam. The room-temperature photoluminescence spectra of the ZnO nanoparticles show intense violet emission along with emission in blue and green bands. The excellent ultraviolet emission indicates that the ZnO nanostructures have a low defect concentration.  相似文献   

11.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

12.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared using the method of laser ablation in various liquids at wavelengths of 397, 532, and 795 nm with laser pulses of different duration are studied. An analysis of the dimensional and spectral characteristics of the silver nanoparticles revealed a time dynamics of the nanoparticle size distribution in solutions. It is shown that thermal self-defocusing is observed for the case of nanosecond or shorter pulses generated with a high repetition rate. For picosecond and femtosecond pulses with a low repetition rate, the effects of self-focusing (γ = 3 × 10?13 cm2 W?1) and saturated absorption (β = ?1.5 × 10?9 cm W?1) were observed in the solutions under study. The third-order nonlinear susceptibility of the silver nanoparticles was found to be 5 × 10?8 esu at a wavelength of 397 nm.  相似文献   

13.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids were investigated at 397.5, 532, and 795 nm. The TEM and spectral measurements have shown temporal dynamics of size distribution of Ag nanoparticles in solutions. The thermal-induced self-defocusing dominated in the case of high pulse repetition rate as well as in the case of nanosecond pulses. In the case of low pulse repetition rate, the self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) of picosecond and femtosecond radiation were observed in these colloidal solutions. The nonlinear susceptibility of Ag nanoparticles ablated in water was measured to be 5 × 10−8 esu (at λ = 397.5 nm).  相似文献   

14.
Size of nanoparticles is an important parameter for their applications. The real-time monitoring is required for reliable and reproducible production of nanoparticles with controllable size. We present results of our research on development of the system for the online nanoparticle characterization during their production by a laser. The laser ablation chamber which allows measurements of surface plasmon resonance spectra during the nanoparticle generation process has been designed and fabricated. The online characterization system was tested by producing and modification of gold nanoparticles. Nanoparticles were generated by nanosecond-laser (wavelength 1064 nm) ablation of gold target in deionized water, and optimal conditions for the highest nanoparticle productivity were estimated. The mean diameter of nanoparticles was determined using their absorption spectra measured in the real-time during the ablation experiments and from the TEM images analysis, and it varied from 20 to 45 nm. The mismatch between nanoparticle diameters, estimated using these two methods, is due to the polydispersity of the generated nanoparticles. The further experiments of laser-induced modification of colloidal gold nanoparticles were carried out using second harmonic (wavelength 532 nm) of nanosecond Nd:YAG laser and alteration in nanoparticle size were acquired by the online measurement system.  相似文献   

15.
Nd:YAG纳秒激光诱导硅表面微结构的演化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用Nd:YAG纳秒激光(波长为532和355 nm)对单晶硅在真空中进行了累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,532和355 nm激光脉冲均在硅表面诱导出了波纹结构,后者辐照硅表面后形成了近似同心但稍显混乱的环形波纹结构.随着脉冲数的增加,波纹结构逐渐演化为一种类似珠形的凹凸结构,最后形成准规则排列的微米量级锥形结构,该微结构的生长依赖于表面张力波和结构自组织.分析发现,形成的交叉环形结构主要是在355 nm激光辐照硅的过程中,表面张力波导致波纹结构部分叠加的结果.  相似文献   

16.
17.
叶成  邱荣  蒋勇  高翔  郭德成  周强  邓承付 《强激光与粒子束》2018,30(4):041003-1-041003-5
利用Nd: YAG激光器研究基频(1064 nm)与倍频(532 nm)单独辐照和同时辐照下熔石英的损伤规律,对损伤几率进行了测试,获得损伤几率曲线与典型损伤形貌。研究结果表明:双波长同时辐照下的初始损伤阈值总是小于单波长辐照下的初始损伤阈值;基频光中加入定量倍频光后,熔石英对基频光的吸收效率提高;并且双波长同时辐照下,熔石英损伤密度增大;原因主要是熔石英表面缺陷对不同波长吸收机制的差异。  相似文献   

18.
We have successfully produced silver nanoparticles by irradiating an Ag target with a 532-nm laser beam in pure water. By working with high laser power and small spot sizes, we were able to synthesize very small spherical particles with a typical size of 2–5 nm. The influence of the beam spot size, the laser power, and the ablation time were studied, and the possible mechanisms of particle formation are discussed. PACS 79.20.Ds; 81.07.-b  相似文献   

19.
In this study, results in the irradiation of stainless steel AISI 304 in air with nanosecond laser pulses at laser irradiation power density 4×107 W/cm2 are reported. Laser processing parameters, such as wavelengths 532 and 1064 nm, pulse duration 20 ns and repetition rate 10 Hz were used. It is shown that the surface morphology of the stainless steel is related to the number of pulses applied to the same spot. The following surface morphological changes were observed: (i) occurrence of the micro-grains microstructures at wavelengths 532 and 1064 nm after 10 000 pulses irradiation and (ii) occurrence of vermiform-like microstructures at wavelength 1064 nm after 1000 pulses irradiation. Generally, it is concluded that irradiation due to several consecutive pulses caused significant damage and enhanced the stainless steel surface roughness.  相似文献   

20.
The dependence of the ablation rate of aluminium on the fluence of nanosecond laser pulses with wavelengths of 532 nm and respectively 1064 nm is investigated in atmospheric air. The fluence of the pulses is varied by changing the diameter of the irradiated area at the target surface, and the wavelength is varied by using the fundamental and the second harmonic of a Q-switched Nd-YAG laser system. The results indicate an approximately logarithmic increase of the ablation rate with the fluence for ablation rates smaller than ∼6 μm/pulse at 532 nm, and 0.3 μm/pulse at 1064 nm wavelength. The significantly smaller ablation rate at 1064 nm is due to the small optical absorptivity, the strong oxidation of the aluminium target, and to the strong attenuation of the pulses into the plasma plume at this wavelength. A jump of the ablation rate is observed at the fluence threshold value, which is ∼50 J/cm2 for the second harmonic, and ∼15 J/cm2 for the fundamental pulses. Further increasing the fluence leads to a steep increase of the ablation rate at both wavelengths, the increase of the ablation rate being approximately exponential in the case of visible pulses. The jump of the ablation rate at the threshold fluence value is due to the transition from a normal vaporization regime to a phase explosion regime, and to the change of the dimensionality of the hydrodynamics of the plasma-plume.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号