首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An approach toward visual detection and chemical utilization of NO(2)/N(2)O(4) is proposed, which employs simple calix[4]arenes. Exposure of tetra-O-alkylated calix[4]arenes 1 and 2, possessing either a cone or a 1,3-alternate conformation, to NO(2)/N(2)O(4), both in chloroform solution and in the solid state, results in deeply colored calixarene-nitrosonium (NO(+)) complexes. In the presence of a Lewis acid, such as SnCl(4), stable calixarene-NO(+) complexes 7 and 8 were isolated in a quantitative yield and characterized by UV-vis, FTIR, high-resolution (1)H NMR spectroscopy and elemental analysis. NO(+) is found encapsulated within the calixarene cavity, and stable charge-transfer complexes result with K(ass) > 10(6) M(-1) (CDCl(3)). The NO(+) encapsulation was also demonstrated in titration experiments with calixarenes 1, 2, and 5 and commercially available NO(+)SbF(6)(-) salt in chloroform. The complexation process is reversible, and the complexes dissociate upon addition of water and alcohol, recovering the parent calixarenes. Attachment of functionalized calix[4]arenes to silica gel was demonstrated, which afforded a solid material 15 capable of visual detection and entrapment of NO(2)/N(2)O(4). Calixarene-NO(+) complexes can be utilized for the NO(+) transfer processes and nitrosation reactions. The NO(+) guest transfer between two calixarene containers 2 and 5 was achieved and studied by UV-vis and (1)H NMR spectroscopy. Chemical fixation of NO(2)/N(2)O(4) was demonstrated through their quantitative transformation into the calixarene-NO(+) complex and its use as a nitrosonium transfer agent in the synthesis of N-nitrosoamides. These results may lead toward novel nitrogen oxides storing materials.  相似文献   

2.
3.
Supramolecular rotators of hydrogen-bonding assemblies between anilinium (Ph-NH 3 (+)) or adamantylammonium (AD-NH 3 (+)) and dibenzo[18]crown-6 (DB[18]crown-6) or meso-dicyclohexano[18]crown-6 (DCH[18]crown-6) were introduced into [Ni(dmit) 2] salts (dmit (2-) is 2-thioxo-1,3-dithiole-4,5-dithiolate). The ammonium moieties of Ph-NH 3 (+) and AD-NH 3 (+) cations were interacted through N-H (+) approximately O hydrogen bonding with the six oxygen atoms of crown ethers, forming 1:1 supramolecular rotator-stator structures. X-ray crystal-structure analyses revealed a jackknife-shaped conformation of DB[18]crown-6, in which two benzene rings were twisted along the same direction, in (Ph-NH 3 (+))(DB[18]crown-6)[Ni(dmit) 2] (-) ( 1) and (AD-NH 3 (+))(DB[18]crown-6)[Ni(dmit) 2] (-) ( 3), whereas the conformational flexibility of two dicyclohexyl rings was observed in (Ph-NH 3 (+))(DCH[18]crown-6)[Ni(dmit) 2] (-) ( 2) and (AD-NH 3 (+))(DCH[18]crown-6)[Ni(dmit) 2] (-) ( 4). Sufficient space for the molecular rotation of the adamantyl group was achieved in the crystals of salts 3 and 4, whereas the rotation of the phenyl group in salts 1 and 2 was rather restricted by the nearest neighboring molecules. The rotation of the adamantyl group in salts 3 and 4 was evidenced from the temperature-dependent wide-line (1)H NMR spectra, dielectric properties, and X-ray crystal structure analysis. ab initio calculations showed that the potential energy barriers for the rotations of adamantyl groups in salts 3 (Delta E approximately 18 kJmol (-1)) and 4 (Delta E approximately 15 kJmol (-1)) were similar to those of ethane ( approximately 12 kJmol (-1)) and butane (17-25 kJmol (-1)) around the C-C single bond, which were 1 order of magnitude smaller than those of phenyl groups in salts 1 (Delta E approximately 180 kJmol (-1)) and 2 (Delta E approximately 340 kJmol (-1)). 1D or 2D [Ni(dmit) 2] (-) anion arrangements were observed in the crystals according to the shape of crown ether derivatives. The 2D weak intermolecular interactions between [Ni(dmit) 2] (-) anions in salts 1 and 3 led to Curie-Weiss behavior with weak antiferromagnetic interaction, whereas 1D interactions through lateral sulfur-sulfur atomic contacts between [Ni(dmit) 2] (-) anions were observed in salts 2 and 4, whose magnetic behaviors were dictated by ferromagnetic (salt 2) and singlet-triplet (salt 4) intermolecular magnetic interactions, respectively.  相似文献   

4.
A supramolecular cation of (m-FAni(+))(DB[18]crown-6), where m-FAni(+) and DB[18]crown-6 denote m-fluoroanilinium(+) and dibenzo[18]crown-6, respectively, which is the polar unit rotating in the ferroelectric crystal of (m-FAni(+))(DB[18]crown-6)[Ni(dmit)(2)](-), was introduced into a ferromagnetic [MnCr(oxalate)(3)](-) salt as the counter cation. The crystal structure of (m-FAni(+))(DB[18]crown-6)[MnCr(oxalate)(3)](-)(CH(3)OH)(CH(3)CN) (1) is constructed from alternating layers of a two-dimensional honeycomb layer of [MnCr(oxalate)(3)](-) and (m-FAni(+))(DB[18]crown-6) supramolecular cations. The anionic layer is composed of Mn(II) and Cr(III) ions with S = 5/2 and S = 3/2 spins, respectively, bridged by the oxalate anions, which show ferromagnetic ordering at 5.5 K. The supramolecular structure is formed through the formation of hydrogen bonds between the ammonium hydrogen atoms of the m-FAni(+) cations and the oxygen atoms of the DB[18]crown-6 cavity. No orientational disorder of the fluorine atoms was observed in our X-ray structural analysis, suggesting that a two-fold flip-flop motion of the m-FAni(+) cations does not occur in the salt. The rotational freedom of the m-FAni(+) cations in the salt is restricted by the steric hindrance from neighbouring DB[18]crown-6 molecules. A design strategy for the rotation in a salt is discussed, based on the volume that the supramolecular cations occupy in the unit cell.  相似文献   

5.
Design of molecular nanotubes is proposed for entrapment and conversion of NO2/N2O4 gases. Synthesis of 1,3-alternate bis-calix[4]arene tube 3 of 5 x 11 A internal dimensions is presented, and its reversible reactions with NO2/N2O4 in solution are studied. Exposure of 3 to NO2/N2O4 in chlorinated solvents results in the rapid encapsulation of nitrosonium (NO+) cations within its interior. Mono- and dinitrosonium complexes 4 and 5, respectively, were isolated and characterized by UV-vis, FTIR, and 1H NMR spectroscopies, and also molecular modeling. The NO+ entrapment process is reversible, and addition of water quickly recovered starting tube 3. Encapsulated within the tube NO+ species act as nitrosating agents for secondary amides. These findings open wider perspectives toward NO2/NOx storing and converting materials and also offer a promise for further development of supramolecular chemistry of synthetic nanotubes.  相似文献   

6.
Two multifunctional photoactive complexes [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+)=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine) were synthesized, characterized, and their redox and photonic properties were investigated by cyclic voltammetry; ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions; and time-resolved resonance Raman spectroscopy. The first reduction step of either complex occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans-->cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDpe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3)-->MeDpe(+ 3)MLCT (MLCT=metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximately 42 (73 %) and approximately 430 ps (27 %). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3)-->MeDpe(+) and Re(CO)(3)-->bpy (3)MLCT states, from which a MeDpe(+) localized intraligand (3)pipi* excited state ((3)IL) is populated with lifetimes of approximately 0.6 and approximately 10 ps, respectively. The (3)IL state undergoes a approximately 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle structural variations. The complex [Re(MeDpe(+))(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.  相似文献   

7.
Making single-walled carbon nanotubes (SWNTs) soluble in water is a challenging first step to use their remarkable electronic and optical properties in a variety of applications. We report that acyclic cucurbit[n]uril molecular containers 1 and 2 selectively solubilize small-diameter and low chiral angle SWNTs. The selectivity is tunable by increasing the concentration of the molecular containers or by adjusting the ionic strength of the solution. Even at a concentration 1000 times lower than typically required for surfactants, the molecular containers render SWNTs soluble in water. Molecular mechanics simulations suggest that these C-shaped acyclic molecules complex the SWNTs such that a large portion of nanotube sidewalls are exposed to the external environment. These "naked" nanotubes fluoresce upon patching the exposed surface with sodium dodecylbenzene sulfonate.  相似文献   

8.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

9.
Hydrogen-bonded assemblies of the two-electron reduced mixed-valence Keggin clusters [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) were obtained by the one-pot electron-transfer reactions between p-phenylenediamine (PPD) or 2,3,5,6-tetramethyl-PPD (TMPPD) (donors) and H(+)(3)[PMo(12)O(40)](3-) or H(+)(4)[SiMo(12)O(40)](4-) (acceptors) in CH(3)CN. The redox states of the [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) clusters were confirmed by the redox titrations and electronic absorption measurements. In (HPPD(+))(3)(H(+))(2)[PMo(12)O(40)](5-)(CH(3)CN)(3-6) (1), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HPPD(+) (or diprotonated H2PPD(2+)) and the [PMo(12)O(40)](5-) resulted in a windmill-like assembly and hydrophilic one-dimensional channels are formed with a cross-sectional area of 0.065 nm(2), and these are filled by the CH(3)CN molecules. Also, the CH(3)CN molecules in salt 1 were removed by immersing the single crystals of 1 into H(2)O, CH(3)OH, and C(2)H(5)OH solvents. In the compound, (HTMPPD(+))(6)[SiMo(12)O(40)](6-)(CH(3)CN)(6) (2), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HTMPPD(+) molecules and the [SiMo(12)O(40)](6-) formed a "Saturn-ring"-like assembly. Each Saturn-ring was arranged into an hexagonally packed array via hydrogen-bonded and π-stacking interactions of HTMPPD(+), while the CH(3)CN solvent present in salt 2 are only found in the zero-dimensional isolated cavities.  相似文献   

10.
The interaction of CO(2) to the interior and exterior walls of pristine and nitrogen-doped single-walled carbon nanotubes (SWNT) has been studied using density-functional theory with dispersion-correcting potentials (DCPs). Our calculations predict Gibbs energies of binding between SWNT and CO(2) of up to 9.1 kcal mol(-1), with strongest binding observed for a zigzag [10,0] nanotube, compared to armchair [6,6] (8.3 kcal mol(-1)) and chiral [8,4] (7.0 kcal mol(-1)). Doping of the [10,0] tube with nitrogen increases the Gibbs energies of binding of CO(2) by ca. 3 kcal mol(-1), but slightly reduced binding is found when [6,6] and [8,4] SWNT are doped in similar fashion. The Gibbs energy of binding of CO(2) to the exterior of the tubes is quite small compared to the binding that occurs inside the tubes. These findings suggest that the zigzag SWNT show greater promise as a means of CO(2) gas-capture.  相似文献   

11.
Several 2,2-bipyridyl-based d-f heterobinuclear [GdCuL1-5(bpy)2(NO3)2] complexes are present, where (Ligand 1) (9E)-N1-(2-Hydroxy-5-methylbenzylidene)–N2-((E)-2-(2-hydroxy-5-methyl benzylideneamino)ethyl)ethane-1,2-diamine. (Ligand 2) N1,N1-bis((E)-2-(2-hydroxy-5-methylbenzylideneamino)ethyl)ethane-1,2-diamine. (Ligand 3) (9E)-N1-(2-((E)-2-(2-hydroxy-5-methylbenzylideneamino)ethylamino)ethyl)–N2-(2-hydroxy-5-methylbenzylidene)ethane-1,2-diamine. (Ligand 4) (9E)-N1-(2-((E)-3-(2-hydroxy-5- methylbenzylideneamino) propylamino) ethyl)–N3-(2-hydroxy-5-methylbenzylidene)propane-1,3-diamine and (Ligand 5) (9E)-N-(2-hydroxy-5-methylbenzylidene)-3-(4-((E)-3-(2-hydroxy-5-methylbenzylideneamino)propyl)piperazin-1-yl)propan-1-amine. These compounds were described using spectroscopy and the elemental analysis method. Researches were conducted into the luminous, Genetic code, catalytic, magnetism, and breaking attributes of the [GdCuL1-5(bpy)2(NO3)2] complexes. In DMF with 0.1 M tetra-n-butylammonium perchlorate, the binuclear [GdCuL1-5(bpy)2(NO3)2] network complexes exhibit two one electron irreversible reduction events. VSM was used to calculate the complexes' magnetic susceptibility. There is ferromagnetic coupling in the [GdCuL1-5(bpy)2(NO3)2] complexes. The [GdCuL1-5(bpy)2(NO3)2] complexes' excited state lifetimes lengthen in the following order: [GdCuL5(bpy)2] [GdCuL1(bpy)2(NO3)2] [GdCuL3(bpy)2(NO3)2] [GdCuL4(bpy)2] and [GdCuL2(bpy)2(NO3)2]. The binuclear [GdCuL1-5(bpy)2(NO3)2] complexes' inceptive rate of progress for oxidizing 1,2-benzenediol to cyclohexa-3,5-diene-1,2-dione are longer chains with higher activity. Both the [GdCuL5(bpy)2(NO3)2] and [GdCuL4(bpy)2(NO3)2] complexes have strong DNA genetic code properties in the calf genus thymus. The complexes exhibit considerable singlet oxygen-mediated oxidative rift of circular recombinant plasmid pBR322 cloning vector in the existence of 2-sulfanylethanol.  相似文献   

12.
The 18 and 19 valence electron (VE) nitrosyl complexes [Fe(NO)('pyS4')]BF4 ([1]BF4) and [Fe(NO)('pyS4')] (2) have been synthesized from [Fe('pyS4')]x ('pyS4'(2-) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)) and either NOBF4 or NO gas. Complex [1]BF4 was also obtained from [Fe(CO)('pyS4')] and NOBF4. The cation [1]+ is reversibly reduced to give 2. Oxidation of 2 by [Cp2Fe]PF6 afforded [Fe(NO)('pyS4')]PF6 ([1]PF6). The molecular structures of [1]PF6 and 2 were determined by X-ray crystallography. They demonstrate that addition of one electron to [1]+ causes a significant elongation of the Fe-donor atom bonds and a bending of the FeNO angle. Density functional calculations show that the unpaired electron in 2 occupies an orbital, which is antibonding with respect to all Fe-ligand interactions. As expected from qualitative Molecular Orbital (MO) theory, it has a large contribution from a pi* type NO orbital. The nu(NO) frequency decreases from 1893 cm(-1) in [1]BF4 to 1648 cm(-1) in 2 (in KBr). The antibonding character of the unpaired electron explains the ready reaction of 2 with excess NO to give [Fe(NO)2('pyS4')] (3), the facile NO/CO exchange of 2 to afford [Fe(CO)('pyS4')], and the easy oxidation of 2 to [1]+.  相似文献   

13.
The partitioning behavior of pentacyanonitrosilmetallate complexes[Fe(CN) 5NO] (2-), [Mn(CN) 5NO] (3-), and [Cr(CN) 5NO] (3-)has been studied in aqueous two-phase systems (ATPS) formed by adding poly(ethylene oxide) (PEO; 4000 g mol (-1)) to an aqueous salt solution (Li 2SO 4, Na 2SO 4, CuSO 4, or ZnSO 4). The complexes partition coefficients ( K complex) in each of these ATPS have been determined as a function of increasing tie-line length (TLL) and temperature. Unlike the partition behavior of most ions, [Fe(CN) 5NO] (2-) and [Mn(CN) 5NO] (3-) anions are concentrated in the polymer-rich phase with K values depending on the nature of the central atom as follows: K [ F e ( C N ) 5 N O ] 2 - > K [ M n ( C N ) 5 N O ] 3 - > K [ C r ( C N ) 5 N O ] 3 - . The effect of ATPS salts in the complex partitioning behavior has also been verified following the order Li 2SO 4 > Na 2SO 4 > ZnSO 4. Thermodynamic analysis revealed that the presence of anions in the polymer-rich phase is caused by an EO-[M(CN) 5NO] ( x- ) (M = Fe, Mn, or Cr) enthalpic interaction. However, when this enthalpic interaction is weak, as in the case of the [Cr(CN) 5NO] (3-) anion ( K [ C r ( C N ) 5 N O ] 3 - < 1), entropic driving forces dominate the transfer process, then causing the anions to concentrate in the salt-rich phase.  相似文献   

14.
Oh H  Choi EM  Jeong H  Nam KC  Jeon S 《Talanta》2000,53(3):535-542
New lipophilic tetraesters of calix[6]arene and calix[6]diquinone are investigated as cesium ion-selective ionophores in poly(vinyl chloride) membrane electrodes. For an ion-selective electrode based on calix[6]arene tetraester I, the linear response is 1x10(-6)-1x10(-1) M of Cs(+) concentrations. The selectivity coefficients for cesium ion over alkali, alkaline earth and ammonium ions are determined. The detection limit (log a (Cs (+))=-6.31) and the selectivity coefficient (log k (Cs (+),Rb (+))(pot )=-1.88) are obtained for polymeric membrane electrode containing calix[6]arene tetraester I.  相似文献   

15.
Kim J  Ohki A  Ueki R  Ishizuka T  Shimotashiro T  Maeda S 《Talanta》1999,48(3):705-710
Four calix[4]arene dibenzocrown ether compounds have been prepared and evaluated as Cs(+)-selective ligands in solvent polymeric membrane electrodes. The ionophores include 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-6 1, 25,27-bis(1-alkyloxy)calix[4]arene dibenzocrown-7s 2 and 3, and 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-8 4. For an ion-selective electrode (ISE) based on 1, the linear response concentration range is 1x10(-1) to 1x10(-6) M of Cs(+). Potentiometric selectivities of ISEs based on 1-4 for Cs(+) over other alkali metal cations, alkaline earth metal cations, and NH(4)(+) have been assessed. For 1-ISE, a remarkably high Cs(+)/Na(+) selectivity was observed, the selectivity coefficient (K(Cs,Na)(Pot)) being ca. 10(-5). As the size of crown ether ring is enlarged from crown-6 (1) to crown-7 (2 and 3) to crown-8 (4), the Cs(+) selectivity over other alkali metal cations, such as Na(+) and K(+), is reduced successively. Effects of membrane composition and pH in the aqueous solution upon the electrode properties are also discussed.  相似文献   

16.
Paramagnetic centers at the surface of ionic oxides in the form of trapped electrons can be generated by exposure of the material to alkali metal or hydrogen atoms or of molecular hydrogen under UV irradiation. For many years, it has been assumed that the resulting paramagnetic centers consist of oxygen vacancies filled by one electron. High-resolution electron spin resonance spectra and ab initio quantum chemical calculations show that the paramagnetic centers consist of (H(+))(e(-)) electron pairs formed at morphological irregularities of the surface. At least three different kinds of (H(+))(e(-)) centers, [A], [B], and [C], have been identified with abundances of 80%, 10%, and 8%, respectively. In this work, we compare a wide set of measured and computed g-factors and hyperfine coupling constants of the unpaired electron with the surrounding (25)Mg, (17)O, and (1)H nuclei and we propose a general assignment of the centers. (H(+))(e(-)) pairs formed at Mg(4c) ions at steps and edges account for species [A], centers formed at Mg(4c) ions at reverse corners correspond to species [B], and species [C] originates from (H(+))(e(-)) pairs formed at Mg(3c) ions at corners and kinks.  相似文献   

17.
The nitroprusside ion [Fe(CN)(5)NO](2-) (NP) reacts with excess HS(-) in the pH range 8.5-12.5, in anaerobic medium ("Gmelin" reaction). The progress of the addition process of HS(-) into the bound NO(+) ligand was monitored by stopped-flow UV/Vis/EPR and FTIR spectroscopy, mass spectrometry, and chemical analysis. Theoretical calculations were employed for the characterization of the initial adducts and reaction intermediates. The shapes of the absorbance-time curves at 535-575 nm depend on the pH and concentration ratio of the reactants, R=[HS(-)]/[NP]. The initial adduct [Fe(CN)(5)N(O)SH](3-) (AH, λ(max) ≈570 nm) forms in the course of a reversible process, with k(ad)=190±20 M(-1)s(-1) , k(-ad)=0.3±0.05 s(-1) . Deprotonation of AH (pK(a)=10.5±0.1, at 25.0 °C, I=1 M), leads to [Fe(CN)(5)N(O)S](4-) (A, λ(max)=535 nm, ε=6000±300 M(-1) cm(-1) ). [Fe(CN)(5)NO](.)(3-) and HS(2)(.)(2-) radicals form through the spontaneous decomposition of AH and A. The minor formation of the [Fe(CN)(5)NO](3-) ion equilibrates with [Fe(CN)(4)NO](2-) through cyanide labilization, and generates the "g=2.03" iron-dinitrosyl, [Fe(NO)(2)(SH)(2)](-) , which is labile toward NO release. Alternative nucleophilic attack of HS(-) on AH and A generates the reactive intermediates [Fe(CN)(5)N(OH)(SH)(2)](3-) and [Fe(CN)(5)N(OH)(S)(SH)](4-) , respectively, which decompose through multielectronic nitrosyl reductions, leading to NH(3) and hydrogen disulfide, HS(2)(-) . N(2)O is also produced at pH≥11. Biological relevance relates to the role of NO, NO(-) , and other bound intermediates, eventually able to be released to the medium and rapidly trapped by substrates. Structure and reactivity comparisons of the new nitrososulfide ligands with free and bound nitrosothiolates are provided.  相似文献   

18.
Enantiomerically pure alcohols (-)- and (+)-7-tert-butoxycarbonyl-6-endo-p-toluenesulfonyl-7-azabicyclo[2.2.1]hept-2-en-5-endo-ol ((-)-11 and (+)-11) have been obtained from the Diels-Alder adduct of N-(tert-butoxycarbonyl)pyrroel and 2-bromo-1-p-toluenesulfonylacetylene, including a resolution method. These two alcohols were converted into (+)- and (-)-5-exo-amino-7-(tert-butoxycarbonyl)-2,3-exo-isopropylidenedioxy-7-azabicyclo[2.2.1]heptane ((+)-18 and (-)-18) and (+)- and (-)-5-endo-amino-7-(tert-butoxycarbonyl)-2,3-exo-isopropylidenedioxy-7-azabicyclo[2.2.1]heptane ((+)-19 and (-)-19) after adequate functionalization and desulfonylation steps. The corresponding conformationally constrained bicyclic 1,2-diamines (+)-4, (-)-4, (+/-)-5, (+/-)-6, (+)-7, and (-)-7 were obtained from the protected precursors 18 and 19 and evaluated as glycosidase inhibitors. Diamines (+)-4, (-)-4, (+)-6, and (-)-6 can be seen as new nonpeptide molecular scaffolds for the design of peptide analogues.  相似文献   

19.
A capsule-like molecule was constructed by dimerization of pyridine-containing homooxacalix[3]aryl esters utilizing a Pd(II)-pyridine interaction when Li(+) ions were bound to the ionophoric lower rims. (1)H NMR spectral studies showed that the self-assembled molecular capsule 3b.(Li(+))(2) has a highly symmetrical D(3)(h)-structure. It was also found that this self-assembled molecular system can form capsular structures in the presence of Na(+) or ammonium (RNH(3)(+)) ions. Very interestingly, these molecular capsules are twisted into triply bridged helical structures, and chiral RNH(3)(+) guests included in the cavity induce a change in the (P) versus (M) ratio, resulting in high chiral induction ( approximately 70%). These results indicate that the self-assembled molecular capsule 3b has a novel chiral factor in which the (P) versus (M) equilibrium is readily controllable by the inclusion of chiral guest molecules.  相似文献   

20.
The supramolecular metal-ligand assemblies of M416 stoichiometry are chiral (M = GaIII, AlIII, InIII, FeIII, TiIV, or GeIV, H41 = N,N'-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene). The resolution process of delta delta delta delta- and lambda lambda lambda lambda-[M(4)1(6)]12- by the chiral cation S-nicotinium (S-nic+) is described for the Ga(III), Al(III), and Fe(III) assemblies, and the resolution is shown to be proton dependent. From a methanol solution of M(acac)3, H(4)1, S-nicI, and KOH, the delta delta delta delta-KH3(S-nic)7[(S-nic) subset M(4)1(6)] complexes precipitate, and the lambda lambda lambda lambda-K6(S-nic)5[(S-nic) subset M(4)1(6)] complexes subsequently can be isolated from the supernatant. Ion exchange enables the isolation of the (NEt4(+))(12), (NMe4(+))(12), and K+(12) salts of the resolved structures, which have been characterized by CD and NMR spectroscopies. Resolution can also be accomplished with 1 equiv of NEt4+ blocking the cavity interior, demonstrating that external binding sites are responsible for the difference in S-nic+ enantiomer interactions. Circular dichroism data demonstrate that the (NMe4(+))(12) and (NEt4(+))(12) salts of the resolved [Ga(4)1(6)]12- and [Al(4)1(6)]12- structures retain their chirality over extended periods of time (>20 d) at room temperature; heating the (NEt4(+))(12)[Ga(4)1(6)] assembly to 75 degrees C also had no effect on its CD spectrum. Finally, experiments with the resolved K(12)[Ga(4)1(6)] assemblies point to the role of a guest in stabilizing the resolved framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号