首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten different samples with 13 previously identified saponin structures from Quillaja saponaria Molina were investigated by electrospray ionization ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive and negative ion modes. Both positive and negative ion mode MS(1)-MS(4) spectra were analyzed, showing that structural information on the two oligosaccharide parts in the saponin can be obtained from positive ion mode spectra whereas negative ion mode spectra mainly gave information on one of the oligosaccharide parts. Analysis of MS(1)-MS(4) spectra identified useful key fragment ions important for the structural elucidation of Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from MS(1)-MS(3) spectra was constructed for the identification of structural elements in the saponin. Peak intensity ratios in MS(3) spectra were found to be correlated with structural features of the investigated saponins and are therefore of value for the identification of terminal monosaccharide residues.  相似文献   

2.
Fifteen identified C-18 fatty acyl-containing saponin structures from Quillaja saponaria Molina have been investigated by electrospray ionization ion-trap multiple-stage mass spectrometry (ESI-IT-MS(n)) in positive ion mode. Their MS(1)-MS(3) spectra were analyzed and ions corresponding to useful fragments, important for the structural identification of Quillaja saponins, were recognized. A few key fragments could describe the structural variations in the C-3 and the C-28 oligosaccharides of the Quillaja saponins. A flowchart involving a stepwise procedure based on key fragments from the MS(1)-MS(3) spectra of these saponins, together with key fragments from these saponins and 13 previously investigated saponins, was constructed for the identification of structural elements in Quillaja saponins. Peak intensity ratios in MS(3) spectra were found to be correlated to structural features of the investigated saponins and is therefore of value for the identification of regioisomers.  相似文献   

3.
Sartans and related analogues with 5‐oxo‐l, 2, 4‐oxadiazole ring and tetrazole ring are investigated in detail using collision‐induced dissociation (CID) method in positive ion mode by electrospray ionization tandem mass spectrometry (ESI‐MSn). It is found that the protonated sartans and related analogues tend to form the N‐substituted‐3‐substituted phenanthridin‐6‐amine ion which has a large conjugative structure. The possible fragmentation pathways were proposed for the first time, and the key structure of product ions was confirmed by high resolution tandem mass spectrometry and theoretical calculation. It is very helpful for understanding the intriguing roles of sartans analogues in fragmentation reactions and enriching the knowledge of the gas‐phase chemistry of the oxadiazole and tetrazole ring. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Thirty-eight saponins in two chromatographic fractions (QH-B and QH-C) from Quillaja saponaria Molina have been separated by a two-step high-performance liquid chromatography (HPLC) procedure and investigated by electrospray ionisation ion trap multiple-stage mass spectrometry (ESI-ITMS(n)) in positive ion mode. MS(2) and MS(3) spectra of the compounds were investigated by principal component analysis (PCA) and could be classified by partial least squares - discriminant analysis (PLS-DA) according to the structures of the oligosaccharides at C-3 and C-28 of the saponins. Four minor components with novel structures were found in a previously non-investigated fraction of QH-C. The structures of two of these components, J1 and J1a, were predicted by PLS-DA whereas the structures of the two others, J2 and J3, were only partly predicted. The structures of J1 and J1a were composed of structural elements found in the 34 known saponins whereas a new acyl substituent, not included in the training set used for calibration of the PLS-DA models, was found in J2 and J3, making these two components outliers. The complete structures of the four components were confirmed by monosaccharide analysis, MS(n) data and (1)H NMR spectroscopy.  相似文献   

5.
Fragmentation pathways of a series of pentacoordinated bisaminoacylspirophosphoranes were elucidated by electrospray ionization multistage mass spectrometry (ESI-MS(n)) in negative mode. The deprotonated ions of pentacoordinated bisaminoacylspirophosphoranes tend to eliminate a corresponding amino acid to form base peak. The hydrogen/deuterium exchange experiment, the high-resolution mass spectrometry, (13)C stable isotope labeling experiment and theoretical calculations were used to rationalize the proposed fragmentation pathways and to verify the differences between the fragmentation pathways. The results indicate that the negative molecular ions of pentacoordinated bisaminoacylspirophosphoranes dissociate through its open-chain tricoordinated tautomers. The relative Gibbs free energies (ΔG) of the product ions and proposed fragmentation pathways were estimated using the B3LYP/6-31 + + G(d, p) model. The results have some potential applications in the identification structures of similar spirophosphorane compounds by ESI-MS(n).  相似文献   

6.
Huang X  Song F  Liu Z  Liu S 《Analytica chimica acta》2008,615(2):124-135
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified. And the lignan components in Schisandra chinensis (Turcz.) Baill. fruits (SCF) and Schisandra sphenanthera Rehd. et Wils. fruits (SSF) were identified by comparing the structural information and fragmentation mechanisms. Then a pair of isobaric compounds was differentiated. Meanwhile these two similar fruits were distinguished. The research results demonstrated that ESI-MSn technique is a sensitive, selective and effective tool for the direct analysis and rapid determination of constituents in complex mixtures from nature products. And these should be useful for the identification of similar compounds and differentiation of similar species from Chinese herbs.  相似文献   

7.
Flow injection analysis (FIA) with ESI-MS and ion chromatography (IC) with inductively coupled plasma-MS (ICP-MS) as the complementary technique have been explored for the determination of metal ions as their metal-EDTA complexes. ESI-MS enabled the identification of metal-EDTA complexes such as [Mn(EDTA)](2-), [Co(EDTA)](2-), [Ni(EDTA)](2-), [Cu(EDTA)](2-), [Zn(EDTA)](2-), [Pb(EDTA)](2-), and [Fe(EDTA)](1-) and their MS spectral showed that these metal-EDTA complexes were present in solution. Based on the ESI-MS, ion chromatographic separation and ICP-MS detection of these complexes are possible because IC-ICP-MS requires stable metal-EDTA complex during the chromatographic separation. The separation of these metal-EDTA complexes was achieved on an anion-exchange column with a mobile phase containing 30 mM NH(4)(HPO(4))(2) at pH 7.5 within 7 min with ICP-MS providing element specific detection. The ICP-MS LODs for the metal-EDTA were in the range of 0.1-0.5 microg/L with the exception of Fe (15 microg/L). The proposed method was a simple procedure for sample processing, using direct injection of sample without removal of sample matrix and was successfully applied to the determination of metal-EDTA complexes in real samples.  相似文献   

8.
Liquid secondary ion and electrospray mass spectrometry were used to study the complexation in-source of 5,10,15-tris(pentafluorophenyl)corrole with several divalent transition-metal ions. The metallocorrole ions formed in-source were identified by comparing their product ion mass spectra with the spectra of the same ions formed from metallocorroles obtained from classical procedures. Positive metallocorrole ion formation is accompanied by oxidation of the metal centre. Mechanisms were proposed for the oxidation processes, and data from negative-ion spectra reinforced these mechanisms.  相似文献   

9.
Malonyl‐triterpene saponins (MTSs) attract scientific attentions because of their structural diversities and valuable bioactivities. However, its thermal instability brings a huge amount of challenges for isolation and purification of this class of compounds. To our best knowledge, there has been no report on isolation and analysis of MTSs from genus Caulophyllum. In this study, a strategy combining data acquisition using an energy‐resolved technique and the narrow widow extracted ion chromatograms as data mining method was developed for discovery and identification of MTSs in Caulophyllum robustum hair roots by ultra high liquid chromatography coupled to electrospray ionization Fourier transform mass spectrometry. The method was performed at an independent MS full scan using our bottom‐up energies by in‐source collision induced dissociations with 0, 25, 50 and 100 eV in both positive and negative modes. Precursor ion as well as fragment ion information was simultaneously collected from four energy‐resolved MS spectra in a single run of 18 min. The fragmentation pathways of intact deprotonated, protonated and sodium ions of MTSs were proposed for the structural elucidation of Caulophyllum MTSs. A flowchart involving a stepwise procedure based on key fragments from ESI?/ESI+‐FT‐MS(1, 1) to MS(1, 4) spectra was constructed for the identification of structural elements in the MTSs. As a result, a total of 23 MTSs were discovered and tentatively identified, which had not been reported from Caulophyllum species before. All of these were potentially new compounds. This study provides an excellent example for discovery and identification of MTSs in herb medicines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In-source collision-induced dissociation (CID) fragmentation features of multiclass flavonoid glycoconjugates were examined using liquid chromatography electrospray time-of-flight mass spectrometry. Systematic experiments were performed to search for optimal conditions for in-source fragmentation in both positive and negative ion modes. The objective of the study was to attain uniformly appropriate conditions for a wide range of analytes independently of the aglycone, the attached sugar part and the type of bond between the aglycone and the glycan moieties (O- or C-glycosides). Studied substances included representatives of flavonols, flavones, flavanones and anthocyanins and, regarding their glycan parts, mono-, di- and triglycosides with varying distribution of carbohydrate moieties (di-O-glycosides, O-diglycosides, O,C-diglycosides). The breakdown properties of the analytes along with the abundances of the characteristic diagnostic ions required for structural elucidation of complex flavonoid derivatives were evaluated. An optimized value was found for the instrument parameter (fragmentor voltage) affecting the in-source CID fragmentation of the analytes [230 V (ESI+) and 330 V (ESI-)]. Thus, appropriate performance in terms of both highly sensitive full-scan acquisition and fragmentation information was obtained for all the investigated flavonoids. In addition, singularities in the abundance of selected diagnostic ions (e.g. Y(0), Y(1) and Y*) due to variations in the interglycosidic linkage (rutinoside-neohesperidoside) in the glycan part were found and are also evaluated and discussed in detail. The combination of in-source CID fragmentation with high mass accuracy MS detection establishes a working basis for the development of versatile and useful LC-MS methods for wide-scope screening, non-targeted detection and tentative identification of flavonoid derivatives.  相似文献   

12.
V‐nerve agents present information‐poor spectra, both in GC‐EI‐MS and LC‐ESI‐MS/MS, with dominant fragments/product ions corresponding to the amine‐containing residue. Hence, derivatives/isomers with the same amine residue exhibit similar mass spectral patterns, leading to ambiguity in the phosphonate structure. We present a simple approach for their structural elucidation based on two complementary experiments: ESI‐MS/MS of the original compound, which provides information about the amine moiety, and ESI‐MS/MS of the phosphonic acid hydrolysis products generated by N‐iodosuccinimide, which provides ions' characteristic of the phosphonate structure. This approach enables the structural elucidation of the original V‐agents with a higher degree of certainty.  相似文献   

13.
Triple-stage quadrupole (TSQ) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) and ion trap ESI-MS/MS can be used to cleave protonated molecules to produce carbocations and neutral molecules in the positive ion mode. Dissociation products which correspond to protonated forms of neutral fragment molecules can also be trapped and detected. These protonated molecules in turn can cleave via carbocation cleavage, ipso cleavage, onium cleavage or McLafferty or related rearrangements. One can elucidate the structures of metabolites from the differences in m/z ratios of the fragments arising from the original drug compound and its metabolite. This strategy for structural elucidation is further facilitated by estimates of the reactivity of drugs with oxygen diradicals involved in cytochrome P-450 cycles.  相似文献   

14.
The probe electrospray ionization (PESI) is an ESI‐based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI‐MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI‐MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The conformation dependence of protein spectra recorded by electrospray ionization mass spectrometry (ESI-MS) is an interesting and useful phenomenon, whose origin is still the object of debate. Different mechanisms have been invoked in the attempt to explain the lower charge state of folded versus unfolded protein ions in ESI-MS, such as electrostatic repulsions, solvent accessibility, charge availability, and native-like interactions. In this work we try to subject to direct experimental test the hypothesis that conformation-dependent neutralization of charges with polarity opposite to the net charge of the protein ion could play a critical role in such an effect. We present results of time-of-flight nano-ESI-MS on the peptide angiotensin II, indicating that negative charges of carboxylate groups can contribute to spectra recorded in positive-ion mode when stabilized by favorable electrostatic interactions, which is the central assumption of our hypothesis. Comparison of horse and spermwhale myoglobin (Mb) shows that changing the total number of basic residues within a given three-dimensional structure shifts the charge-state distribution (CSD) of the folded protein in positive-ion mode. This result appears to be in contrast to models in which electrostatic repulsions or availability of charges in the ESI droplets represent the limiting factor for the ionization of folded protein ions in ESI-MS. At the same time, it suggests a role of acidic residues in conformational effects in positive-ion mode. Furthermore, an attempt is made to rationalize those cases in which, in contrast, the main charge state observed in ESI-MS under non-denaturing conditions deviates considerably from the net charge expected on the basis of the amino-acid composition. These cases usually correspond to proteins with quite balanced content in basic and acidic residues, suggesting that this might be a factor influencing their charging behavior in ESI-MS. Experiments on mutants of ribonuclease Sa (RNase Sa) reveal that progressively reducing the excess of acidic residues, replacing them by lysine, causes almost no shift in the spectrum of the folded protein in negative-ion mode. Analogously, variants with an excess of three or five basic residues give similar spectra in positive-ion mode. These results indicate a lower limit to the extent of ionization observable by ESI-MS (6- or 8+ in the case of RNase Sa in water). Below such limit of net charge, changes in the relative amount of ionizable side chains do not affect the qualitative features of the observed CSDs. A progressive loss of signal intensity caused by the mutations in negative-ion mode suggests that low charge states might also be counterselected, even within the m/z range theoretically accessible to the instrument.  相似文献   

16.
A reversed-phase high-performance liquid chromatography-diode array detector-electrospray ionization multiple-stage tandem mass spectrometry (RP-HPLC-DAD-ESI-MS(n)) method has been developed for the detection and analysis of lignan constituents in the methanol extract from the fruits of Schisandra chinensis (Turcz.) Baill. RP-HPLC-DAD-ESI-MS(n) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MS(n)) have been applied to investigate the characteristic product ions of four lignan reference compounds. Then, the logical fragmentation pathways of the lignans have been proposed. By comparing the retention time (t(R)) of HPLC, the ESI-MS(n) data and the structures of analyzed compounds with the data of reference compounds and in the literature, 11 peaks in HPLC have been unambiguously identified and another 5 peaks have been tentatively identified or deduced. Also, in the present paper, the extracted ion chromatograms (EIC) have been used to analyze the lignan isomers. The experimental results demonstrate that RP-HPLC-DAD-ESI-MS(n) is a specific and useful method for the identification of the lignan constituents and their isomers.  相似文献   

17.
Binding interactions of a new series of anthrapyrazoles (APs) with DNA were evaluated by electrospray ionization mass spectrometry (ESI-MS). Relative binding affinities were estimated from the ESI-MS data based on the fraction of bound DNA for DNA/anthrapyrazole mixtures, and they show a correlation to the shift in melting point of the DNA measured from a previous study. Minimal sequence specificity was observed for the series of anthrapyrazoles. Upon collisionally activated dissociation of the duplex/anthrapyrazole complexes, typically ejection of the ligand was the dominant pathway for most of the complexes. However, for complexes containing AP2 or mitoxantrone, strand separation with the ligand remaining on one of the single strands was observed, indicative of a different binding mode or stronger binding.  相似文献   

18.
In this study, electrospray ionization mass spectrometry (ESI-MS) is used to study the formation of G-quadruplex by d(GGAGGAGGAGGA) which locates at the promoter region of c-myb gene. In addition, a natural small molecule, dehydrocorydaline from a Chinese herb, is found to have the highest binding affinity with the G-quadruplex in nine natural small molecules studied, and the binding selectivity of this natural molecule toward the c-myb G-quadruplex with respect to corresponding duplex DNA is significantly higher than that of the broad-spectrum G-quadruplex-ligand TMPyP4. The result from ESI-MS indicates that the gas-phase kinetic stability of the G-quadruplex can be enhanced by binding of dehydrocorydaline. To further investigate the binding properties of dehydrocorydaline to the G-quadruplex, Autodock3 is used to calculate the docked sites and docked energies of small molecules binding to the G-quadruplex and the result shows that the docked energy of dehydrocorydaline is the biggest in the nine small molecules used, consistent with the result from ESI-MS.  相似文献   

19.
Human plasma-derived antithrombin was characterized in both the native and de-N-glycosylated forms (without separation of isoforms) by means of electrospray ionization ion trap mass spectrometry (ESI-ITMS). In order to determine the limits of the instrument set-up, the molecular mass precision and accuracy of the ESI-ITMS analysis was evaluated with the standard protein enolase and some instrumental data acquisition parameters were optimized. Mass precision was determined as a function of the number of averaged mass spectra (= scans) and data acquisition time. For this study, 20 and 50 scans were averaged and the data acquisition time was chosen to be between 0.5 and 5 min. It turned out that data acquisition times longer than approximately 2 min show no significant differences of the standard deviation of the determined molecular mass. Furthermore, the ion trap scan rate was varied at constant acquisition time of 2 min and the number of averaged scans was set to 20. At the scan rate of 13,000 u s(-1) a mass precision of +/-1.8 Da and a mass accuracy of +0.026% were determined. On reducing the scan rate to 5500 u s(-1), better agreement with the theoretical molecular mass was obtained, showing a mass accuracy of +0.012% but with a decrease in the mass precision to +/-3.0 Da. Using the optimized scan rate of 13,000 u s(-1) and a data acquisition time of 2 min, the exact molecular mass was determined of the three forms of antithrombin, namely the alpha-form, the beta-form and the natural mixture (present in human plasma) containing both forms. The protonated molecular masses were found to be 57,854 and 55,664 Da for the affinity chromatography-isolated alpha-and beta-form, respectively. The mass difference of 2190 Da is attributed to the known difference in carbohydrate content at one specific site. The protonated molecular mass of the dominating species of the natural mixture in human plasma was shown to be 57,850 Da, corresponding to the alpha-form, the major component in native plasma. In this mixture the beta-form was also detected, exhibiting a protonated molecular mass of 55,655 Da, but showing a much lower abundance, as expected. To obtain a complete release of the N-glycan residues by means of PNGase F, a denaturation, reduction and alkylation step of the glycoproteins was performed before the enzymatic reaction. After enzymatic removal of all N-glycans, the protonated molecular masses obtained were 49,399, 49,380 and 49,391 Da for the alpha-form, the beta-form and the unseparated natural mixture, respectively. These values are in good agreement (+0.026% for the alpha-form, -0.012% for the beta-form and +0.010% for the unseparated mixture) with the calculated molecular mass based on the SwissProt data. The determined molecular masses after reduction/alkylation and de-N-glycosylation of the alpha-and beta-forms are almost equal, indicating that no major differences exist between the three preparations on the amino acid level.  相似文献   

20.
A novel qualitative and quantitative method using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for simultaneous determination of the nine major active constituents in Pulsatilla cernua (Thunb.) Bercht. et Opiz., namely anemoside A3 (1), anemoside B4 (2), 23-hydroxybetulinic acid (3), cirenshenoside S (4), pulsatilloside B (5), pulsatilloside C (6), oleanolic acid (7), ajugasterone C (8) and β-ecdysterone (9), respectively. A Sapphire C18 column (250 mm × 4.6 mm, 5 μm) and gradient elution were used during the analysis. The identification and quantification of the analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple-reaction monitoring (MRM) scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. All calibration curves showed good linearity (r(2) > 0.9948) within the test ranges. The intra and interday variations for nine analytes were less than 3.95 and 3.78%, respectively. The developed method was successfully applied to determine the investigated compounds in 15 batches of natural and cultured samples of P. cernua. The results indicated that the method was simple, rapid, specific and reliable, which is helpful to comprehensive evaluation of quality of P. cernua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号