首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three-Dimensional Delaunay Mesh Generation   总被引:1,自引:0,他引:1  
We propose an algorithm to compute a conforming Delaunay mesh of a bounded domain in specified by a piecewise linear complex. Arbitrarily small input angles are allowed, and the input complex is not required to be a manifold. Our algorithm encloses the input edges with a small buffer zone, a union of balls whose sizes are proportional to the local feature sizes at their centers. In the output mesh, the radius-edge ratio of the tetrahedra outside the buffer zone is bounded by a constant independent of the domain, while that of the tetrahedra inside the buffer zone is bounded by a constant depending on the smallest input angle. Furthermore, the output mesh is graded. Our work is the first that provides quality guarantees for Delaunay meshes in the presence of small input angles.  相似文献   

2.
Delaunay refinement algorithms for triangular mesh generation   总被引:36,自引:0,他引:36  
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.

Although small angles inherent in the input geometry cannot be removed, one would like to triangulate a domain without creating any new small angles. Unfortunately, this problem is not always soluble. A compromise is necessary. A Delaunay refinement algorithm is presented that can create a mesh in which most angles are 30° or greater and no angle is smaller than arcsin[( , where φ60°is the smallest angle separating two segments of the input domain. New angles smaller than 30° appear only near input angles smaller than 60°. In practice, the algorithm's performance is better than these bounds suggest.

Another new result is that Ruppert's analysis technique can be used to reanalyze one of Chew's algorithms. Chew proved that his algorithm produces no angle smaller than 30° (barring small input angles), but without any guarantees on grading or number of triangles. He conjectures that his algorithm offers such guarantees. His conjecture is conditionally confirmed here: if the angle bound is relaxed to less than 26.5°, Chew's algorithm produces meshes (of domains without small input angles) that are nicely graded and size-optimal.  相似文献   


3.
A variational algorithm for the construction of 3D Delaunay meshes in implicit domains with a nonsmooth boundary is proposed. The algorithm is based on the self-organization of an elastic network in which each Delaunay edge is interpreted as an elastic strut. The elastic potential is constructed as a combination of the repulsion potential and the sharpening potential. The sharpening potential is applied only on the boundary and is used to minimize the deviation of the outward normals to the boundary faces from the direction of the gradient of the implicit function. Numerical experiments showed that in the case when the implicit function specifying the domain is considerably different from the signed distance function, the use of the sharpening potential proposed by Belyaev and Ohtake in 2002 leads to the mesh instability. A stable version of the sharpening potential is proposed. The numerical experiments showed that acceptable Delaunay meshes for complex shaped domains with sharp curved boundary edges can be constructed.  相似文献   

4.
This paper deals with the basic approximation properties of the hp version of the boundary element method (BEM) in ℝ3. We extend the results on the exponential convergence of the hp version of the boundary element method on geometric meshes from problems in polygonal domains to problems in polyhedral domains. In 2D elliptic boundary value problems the solutions have only corner singularities whereas in 3D problems they contain additional edge and corner-edge singularities. The solutions of the corresponding boundary integral equations inherit those singularities. The detailed investigations in our analysis take care of the various types of those singularities. While edge singularities can be analysed using standard one-dimensional approximation results the corner-edge singularities demand a new analysis. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

5.
The Neumann problem as formulated in Lipschitz domains with Lp boundary data is solved for harmonic functions in any compact polyhedral domain of ℝ4 that has a connected 3-manifold boundary. Energy estimates on the boundary are derived from new polyhedral Rellich formulas together with a Whitney type decomposition of the polyhedron into similar Lipschitz domains. The classical layer potentials are thereby shown to be semi-Fredholm. To settle the onto question a method of continuity is devised that uses the classical 3-manifold theory of E. E. Moise in order to untwist the polyhedral boundary into a Lipschitz boundary. It is shown that this untwisting can be extended to include the interior of the domain in local neighborhoods of the boundary. In this way the flattening arguments of B. E. J. Dahlberg and C. E. Kenig for the H1at Neumann problem can be extended to polyhedral domains in ℝ4. A compact polyhedral domain in ℝ6 of M. L. Curtis and E. C. Zeeman, based on a construction of M. H. A. Newman, shows that the untwisting and flattening techniques used here are unavailable in general for higher dimensional boundary value problems in polyhedra.  相似文献   

6.
For any 2D triangulation τ, the 1-skeleton mesh of τ is the wireframe mesh defined by the edges of τ, while that for any 3D triangulation τ, the 1-skeleton and the 2-skeleton meshes, respectively, correspond to the wireframe mesh formed by the edges of τ and the “surface” mesh defined by the triangular faces of τ. A skeleton-regular partition of a triangle or a tetrahedra, is a partition that globally applied over each element of a conforming mesh (where the intersection of adjacent elements is a vertex or a common face, or a common edge) produce both a refined conforming mesh and refined and conforming skeleton meshes. Such a partition divides all the edges (and all the faces) of an individual element in the same number of edges (faces). We prove that sequences of meshes constructed by applying a skeleton-regular partition over each element of the preceding mesh have an associated set of difference equations which relate the number of elements, faces, edges and vertices of the nth and (n−1)th meshes. By using these constitutive difference equations we prove that asymptotically the average number of adjacencies over these meshes (number of triangles by node and number of tetrahedra by vertex) is constant when n goes to infinity. We relate these results with the non-degeneracy properties of longest-edge based partitions in 2D and include empirical results which support the conjecture that analogous results hold in 3D.  相似文献   

7.
We describe a distributed memory parallel Delaunay refinement algorithm for simple polyhedral domains whose constituent bounding edges and surfaces are separated by angles between 90° to 270° inclusive. With these constraints, our algorithm can generate meshes containing tetrahedra with circumradius to shortest edge ratio less than 2, and can tolerate more than 80% of the communication latency caused by unpredictable and variable remote gather operations.

Our experiments show that the algorithm is efficient in practice, even for certain domains whose boundaries do not conform to the theoretical limits imposed by the algorithm. The algorithm we describe is the first step in the development of much more sophisticated guaranteed-quality parallel mesh generation algorithms.  相似文献   


8.
In this paper, we derive robust a posteriori error estimates for conforming approximations to a singularly perturbed reaction-diffusion problem on anisotropic meshes, since the solution in general exhibits anisotropic features, e.g., strong boundary or interior layers. Based on the anisotropy of the mesh elements, we improve the a posteriori error estimates developed by Cheddadi et al., which are reliable and efficient on isotropic meshes but fail on anisotropic ones. Without the assumption that the mesh is shape-regular, the resulting mesh-dependent error estimator is shown to be reliable, efficient and robust with respect to the reaction coefficient, as long as the anisotropic mesh sufficiently reflects the anisotropy of the solution. We present our results in the framework of the vertex-centered finite volume method but their nature is general for any conforming one, like the piecewise linear finite element one. Our estimates are based on the usual H(div)-conforming, locally conservative flux reconstruction in the lowest-order Raviart-Thomas space on a dual mesh associated with the original anisotropic simplex one. Numerical experiments in 2D confirm that our estimates are reliable, efficient and robust on anisotropic meshes.  相似文献   

9.
Let be a polyhedral domain occupying a convex volume. We prove that the size of a graded mesh of with bounded vertex degree is within a factor of the size of any Delaunay mesh of with bounded radius-edge ratio. The term depends on the geometry of and it is likely a small constant when the boundaries of are fine triangular meshes. There are several consequences. First, among all Delaunay meshes with bounded radius-edge ratio, those returned by Delaunay refinement algorithms have asymptotically optimal sizes. This is another advantage of meshing with Delaunay refinement algorithms. Second, if no input angle is acute, the minimum Delaunay mesh with bounded radius-edge ratio is not much smaller than any minimum mesh with aspect ratio bounded by a particular constant.  相似文献   

10.
This paper deals with optimal control problems constrained by linear elliptic partial differential equations. The case where the right‐hand side of the Neumann boundary is controlled, is studied. The variational discretization concept for these problems is applied, and discretization error estimates are derived. On polyhedral domains, one has to deal with edge and corner singularities, which reduce the convergence rate of the discrete solutions, that is, one cannot expect convergence order two for linear finite elements on quasi‐uniform meshes in general. As a remedy, a local mesh refinement strategy is presented, and a priori bounds for the refinement parameters are derived such that convergence with optimal rate is guaranteed. As a by‐product, finite element error estimates in the H1(Ω)‐norm, L2(Ω)‐norm and L2(Γ)‐norm for the boundary value problem are obtained, where the latter one turned out to be the main challenge. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the effective numerical treatment of elliptic boundary value problems when the solutions contain singularities. The paper deals first with the theory of problems of this type in the context of weighted Sobolev spaces and covers problems in domains with conical vertices and non-intersecting edges, as well as polyhedral domains with Lipschitz boundaries. Finite element schemes on graded meshes for second-order problems in polygonal/polyhedral domains are then proposed for problems with the above singularities. These schemes exhibit optimal convergence rates with decreasing mesh size. Finally, we describe numerical experiments which demonstrate the efficiency of our technique in terms of ‘actual’ errors for specific (finite) mesh sizes in addition to the asymptotic rates of convergence.  相似文献   

12.
We prove the existence of absolutely continuous invariant measures for arbitrary expanding piecewise linear maps on bounded polyhedral domains in Euclidean spaces ℝ d . Oblatum 6-V-1999 & 8-VI-2000?Published online: 11 October 2000  相似文献   

13.
We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.  相似文献   

14.
Summary. It is shown that for elliptic boundary value problems of order 2m the condition number of the Schur complement matrix that appears in nonoverlapping domain decomposition methods is of order , where d measures the diameters of the subdomains and h is the mesh size of the triangulation. The result holds for both conforming and nonconforming finite elements. Received: January 15, 1998  相似文献   

15.
We prove exponential rates of convergence of hp-version finite element methods on geometric meshes consisting of hexahedral elements for linear, second-order elliptic boundary value problems in axiparallel polyhedral domains. We extend and generalize our earlier work for homogeneous Dirichlet boundary conditions and uniform isotropic polynomial degrees to mixed Dirichlet–Neumann boundary conditions and to anisotropic, which increase linearly over mesh layers away from edges and vertices. In particular, we construct \(H^1\)-conforming quasi-interpolation operators with N degrees of freedom and prove exponential consistency bounds \(\exp (-b\root 5 \of {N})\) for piecewise analytic functions with singularities at edges, vertices and interfaces of boundary conditions, based on countably normed classes of weighted Sobolev spaces with non-homogeneous weights in the vicinity of Neumann edges.  相似文献   

16.
The boundary element spline collocation method is studied for the time-fractional diffusion equation in a bounded two-dimensional domain. We represent the solution as the single layer potential which leads to a Volterra integral equation of the first kind. We discretize the boundary integral equation with the spline collocation method on uniform meshes both in spatial and time variables. In the stability analysis we utilize the Fourier analysis technique developed for anisotropic pseudodifferential equations. We prove that the collocation solution is quasi-optimal under some stability condition for the mesh parameters. We have to assume that the mesh parameter in time satisfies (ht=c h\frac2a)(h_t=c h^{\frac{2}{\alpha}}), where (h) is the spatial mesh parameter.  相似文献   

17.
We develop a local flux mimetic finite difference method for second order elliptic equations with full tensor coefficients on polyhedral meshes. To approximate the velocity (vector variable), the method uses two degrees of freedom per element edge in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions. To approximate the pressure (scalar variable), the method uses one degree of freedom per element. A specially chosen quadrature rule for the L 2-product of vector-functions allows for a local flux elimination and reduction of the method to a cell-centered finite difference scheme for the pressure unknowns. Under certain assumptions, first-order convergence is proved for both variables and second-order convergence is proved for the pressure. The assumptions are verified on simplicial meshes for a particular quadrature rule that leads to a symmetric method. For general polyhedral meshes, non-symmetric methods are constructed based on quadrature rules that are shown to satisfy some of the assumptions. Numerical results confirm the theory.  相似文献   

18.
A singularly perturbed semilinear reaction-diffusion problem in the unit cube, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio condition is imposed. This result is obtained by combining (i) sharp bounds on the Green’s function of the continuous differential operator in the Sobolev W 1,1 and W 2,1 norms and (ii) a special representation of the residual in terms of an arbitrary current mesh and the current computed solution. Numerical results on a priori chosen meshes are presented that support our theoretical estimate.  相似文献   

19.
Summary. We consider two level overlapping Schwarz domain decomposition methods for solving the finite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine grid may be used. Our theory requires no assumption on the substructures that constitute the whole domain, so the substructures can be of arbitrary shape and of different size. The global coarse mesh is allowed to be non-nested to the fine grid on which the discrete problem is to be solved, and neither the coarse mesh nor the fine mesh need be quasi-uniform. In addition, the domains defined by the fine and coarse grid need not be identical. The one important constraint is that the closure of the coarse grid must cover any portion of the fine grid boundary for which Neumann boundary conditions are given. In this general setting, our algorithms have the same optimal convergence rate as the usual two level overlapping domain decomposition methods on structured meshes. The condition number of the preconditioned system depends only on the (possibly small) overlap of the substructures and the size of the coarse grid, but is independent of the sizes of the subdomains. Received March 23, 1994 / Revised version received June 2, 1995  相似文献   

20.
It is well known that the complexity of the Delaunay triangulation of $n$ points in $\RR ^d$, i.e., the number of its simplices, can be $\Omega (n^{\lceil {d}/{2}\rceil })$. In particular, in $\RR ^3$, the number of tetrahedra can be quadratic. Put another way, if the points are uniformly distributed in a cube or a ball, the expected complexity of the Delaunay triangulation is only linear. The case of points distributed on a surface is of great practical importance in reverse engineering since most surface reconstruction algorithms first construct the Delaunay triangulation of a set of points measured on a surface. In this paper we bound the complexity of the Delaunay triangulation of points distributed on the boundary of a given polyhedron. Under a mild uniform sampling condition, we provide deterministic asymptotic bounds on the complexity of the three-dimensional Delaunay triangulation of the points when the sampling density increases. More precisely, we show that the complexity is $O(n^{1.8})$ for general polyhedral surfaces and $O(n\sqrt{n})$ for convex polyhedral surfaces. Our proof uses a geometric result of independent interest that states that the medial axis of a surface is well approximated by a subset of the Voronoi vertices of the sample points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号