首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sublimation enthalpy of dimethyl oxalate has been measured by calorimetric and head space analysis. These results along with vaporization enthalpy measured by correlation gas chromatography and fusion enthalpy measurements are compared to results predicted by two estimation techniques. A previous experimental measurement was found to be in error. A mean value of (75.2±0.5) kJ/mol was obtained which results in a corrected molar value of (–681.5±0.8) kJ/mol for the enthalpy of formation of gaseous dimethyl oxalate, f H m o (g, 298.15 K). This new value of f H m o (g, 298.15 K) for dimethyl oxalate, in combination with other enthalpies of formation, suggests that the ground state of oxalates are destabilized relative to -diketones by approximately 25 kJ/mol.  相似文献   

2.
The standard enthalpy of combustion of crystalline silver pivalate, (CH3)3CC(O)OAg (AgPiv), was determined in an isoperibolic calorimeter with a self-sealing steel bomb, Δc H 0 (AgPiv, cr)= −2786.9±5.6 kJ mol−1. The value of standard enthalpy of formation was derived for crystalline state: Δf H 0(AgPiv,cr)= −466.9±5.6 kJ mol−1. Using the enthalpy of sublimation, measured earlier, the enthalpy of formation of gaseous dimer was obtained: Δf H 0(Ag2Piv2,g)= −787±14 kJ mol−1. The enthalpy of reaction (CH3)3CC(O)OAg(cr)=Ag(cr)+(CH3)3CC(O)O.(g) was estimated, Δr H 0=202 kJ mol−1.  相似文献   

3.
The standard (p o=0.1 MPa) molar energies of combustion for the crystalline 1-benzyl-4-piperidinol and 4-piperidine-piperidine, and for the liquid 4-benzylpiperidine, were measured by static bomb calorimetry, in oxygen, at T=298.15 K. The standard molar enthalpies of sublimation or vaporization, at T=298.15 K, of these three compounds were determined by Calvet microcalorimetry. Those values were used to derive the standard molar enthalpies of formation, at T=298.15 K, in their condensed and gaseous phase, respectively.  相似文献   

4.
The standard molar enthalpies of vaporization l g H m º of 2,5-dimethylfuran, 2-tert-butylfuran, 2,5-di-tert-butylfuran, cyclopentenyl methyl ether, cyclohexenyl methyl ether, and tert-amyl methyl ether were obtained from the temperature variation of the vapor pressure measured in a flow system. The standard (p° = 0.1 MPa) molar enthalpies of formation f H m º (1) at the temperature T = 298.15 K were measured using combustion calorimetry for 2,5-dimethylfuran, 2-tert-butylfuran, and 2,5-di-tert-butylfuran. From the derived standard molar enthalpies of formation for gaseous compounds, ring correction terms and non-nearest neighbor interactions useful in the application of the Benson group additivity scheme were calculated.  相似文献   

5.
Molar heat capacities (C p,m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of C p,m vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 K≤T≤383 K, C p,m/J mol-1 K-1=19.086X 4+15.951X 3-5.2548X 2+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {ΔH TH 298.15} and {S T-S 298.15}, were derived. Combustion energy of aspirin (Δc U m) was determined by static bomb combustion calorimeter. Enthalpy of combustion (Δc H o m) and enthalpy of formation (Δf H o m) were derived through Δc U m as - (3945.26±2.63) kJ mol-1 and - (736.41±1.30) kJ mol-1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The standard enthalpies of combustion c H o of aliphatic diacetates1 and aromatic diacetates2 were measured calorimetrically. The enthalpies of vaporization vap H o or sublimation sub H o of1 and2 were obtained from the temperature function of the vapor pressure measured in a flow system. From f H o(g) of1 and2 new values of group increments for the estimation of standard enthalpies of formation of these classes of compounds were derived. The geminal interaction energy between the geminal acyloxy groups shows no anomeric stabilization.Geminal Substituent Effects, Part 12, for part 11 see Ref. 7.  相似文献   

7.
Thermochemical studies on the thioproline   总被引:3,自引:0,他引:3  
The combustion energy of thioproline was determined by the precision rotating-bomb calorimeter at 298.15 K to be Δc U= –2469.30±1.44 kJ mol–1. From the results and other auxiliary quantities, the standard molar enthalpy of combustion and the standard molar enthalpy of formation of thioproline were calculated to be Δc H m θC4H7NO2S, (s), 298.15 K= –2469.92±1.44 kJ mol–1 and Δf H m θC4H7NO2S, (s), 298.15K= –401.33±1.54 kJ mol–1.  相似文献   

8.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   

9.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

10.
The standard molar enthalpies of formation H f 00B0; (liq) at the temperature t = 298.15 K were determined using combustion calorimetry for N-methyl-3-methyl-3-phenyl-2-butaneamine 1a, N,N-dimethyl-3-methyl-3-phenyl-2-butaneamine 1b N-methyl-2,3-dimethyl-3-phenyl-2-butaneamine 2a, and N,N-dimethyl-2,3-dimethyl-3-phenyl-2-butaneamine 2b. The standard molar enthalpies of vaporization H vap 00B0; of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. The following standard molar enthalpies of formation in gaseous phase H f 00B0; (g) are obtained from these data: for 1a – 10.9 ± 1.9; 1b – 3.6 ± 1.8; 1c – 26.6 ± 1.4, and 1d – 23.0 ± 1.8 kJ mol–1. From the standard molar enthalpies of formation for gaseous compounds which are available in the literature, improved values for the increments of the Benson group addivitiy scheme of amines were calculated. They are used to determine the strain enthalpies of the amines 1 and 2 from this investigation.  相似文献   

11.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the condensed phase, of nine linear-alkyl substituted thiophenes, six in position 2- and three in position 3-, at T=298.15 K, were derived from the standard massic energies of combustion, in oxygen, to yield CO2(g) and H2SO4·115H2O(aq), measured by rotating-bomb combustion calorimetry. The standard molar enthalpies of vaporization of these compounds were measured by high temperature Calvet Microcalorimetry, so their standard molar enthalpies of formation, in the gaseous phase, were derived. The results are discussed in terms of structural contributions to the energetics of the alkyl-substituted thiophenes, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T=298.15 K, for 2- and 3-alkyl-substituted thiophenes, both in the condensed and in the gaseous phases.  相似文献   

12.
The standard gaseous enthalpy of formation for methyl fluoride is estimated by five methods, all of which are in remarkable agreement with each other and which deviate significantly from the available experimental values. The suggested derived value is 225.4±3.2 kJ/mol.  相似文献   

13.
The thermochemical study of cubane-1,4-dicarboxylic acid (1), diethyl cubane-1,4-dicarboxylate (2), diisopropyl cubane-1,4-dicarboxylate (3), and bis(2-fluoro-2,2-dinitro)ethyl cubane-1,4-dicarboxylate (4) was performed. The standard enthalpies of combustion (c H°) and formation (f H°) of these compounds were estimated using the method of combustion in a calorimetric bomb in an oxygen atmosphere. Using the additive group method, calculated values for f H° of these substances which agreed satisfactorily with the experimental ones were obtained. The strain energies (E s) of the cubic structure of derivatives1–4 were calculated. It was concluded thatE s did not change on substitution of hydrogen atoms in cubane for various functional groups and was equal toE s of the structure of cubane itself. The reliability of the single published value of f H° in the cubane crystal state, 541.8 kJ mol–1 (129.5 kcal mol–1), was confirmed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2471–2473, October, 1996.  相似文献   

14.
The enthalpies of combustion (ΔH comb) of five primary, secondary, and tertiary alkyl(aryl)arsines in the condensed state were calculated using the equation ΔH comb = −385.8–110.3N, where N is the number of bond-forming electrons. The dependence presented is used for the calculation of the enthalpies of combustion of full esters and amidoesters of arsinous acid of noncyclic and cyclic structures. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1042–1043, May, 2007.  相似文献   

15.
The standard (p 0=0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T-298.15 K, for 2,5-dimethylpyrazine (2,5-DMePz) and for the two dimethylpyrazine-N,N′-dioxide derivatives, 2,3-dimethylpyrazine-1,4-dioxide (2,3-DMePzDO) and 2,5-dimethylpyrazine-1,4-dioxide (2,5-DMePzDO), were derived from the measurements of standard massic energies of combustion, using a static bomb calorimeter, and from the standard molar enthalpies of vaporization or sublimation, measured by Calvet microcalorimetry. The mean values for the molar dissociation enthalpy of the nitrogen-oxygen bonds, 〈DH m0〉(N-O), were derived for both N,N′-dioxide compounds. These values are discussed in terms of the molecular structure of the two N,N′-dioxide derivatives and compared with 〈DH m0〉(N-O) values previously obtained for other N-oxide derivatives.  相似文献   

16.
Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as a function of temperature, from which the enthalpy of vaporization was calculated. Additionally, some properties of fusion were determined by differential scanning calorimetry, such as enthalpy and temperature. Adding the enthalpy of fusion to the enthalpy of vaporization, the enthalpy of sublimation of the compound was obtained at T = 298.15 K. By combining the enthalpy of formation of the compound in crystalline phase with its enthalpy of sublimation, the respective standard molar enthalpy of formation in the gas phase was calculated. On the other hand, the results obtained in the present work were compared with those of other derivatives of hydantoin, with which the effect of the change of some substituents in the base heterocyclic ring was evaluated.  相似文献   

17.
The standard (p° = 0.1MPa) molar enthalpies of formation for 2-, 3- and 4-cyanophenol in the gaseous phase were derived from the standard molar enthalpies of combustion in oxygen at T = 298.15 K, measured by static bomb combustion calorimetry, and the standard molar enthalpies of sublimation at 298.15 K, measured by Calvet microcalorimetry: 2-cyanophenol, (32.8 ± 2.1) kJ-mol–1; 3-cyanophenol, (37.8 ± 2.2) kJ-mol–1; 4-cyanophenol, (35.1 ± 2.5)-kJ-mol–1. Ab initio geometry optimizations of the three cyanophenols and respective phenoxyl radicals and phenoxide anions were performed using the 6-31G* basis sets. Single-point MP2 and DFT energy calculations allowed the estimation of the enthalpies of formation in the gaseous phase, the O—H bond dissociation energies, and the gas-phase acidities of the three cyanophenols. The theoretical results are generally in good agreement with the experimental findings.  相似文献   

18.
The energy of combustion of crystalline 3,4,5-trimethoxybenzoic acid in oxygen at T=298.15 K was determined to be -4795.9±1.3 kJ mol-1 using combustion calorimetry. The derived standard molar enthalpies of formation of 3,4,5-trimethoxybenzoic acid in crystalline and gaseous states at T=298.15 K, ΔfHm Θ (cr) and ΔfHm Θ (g), were -852.9±1.9 and -721.7±2.0 kJ mol-1, respectively. The reliability of the results obtained was commented upon and compared with literature values. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
稀土氨基酸配合物是一类具有应用前景的化合物,它有杀菌、消炎、抗凝血等作用 [1,2], 1975年 Anghileri报道了 La(Gly)3Cl3· 3H2O具有抗肿瘤作用后,更引起了人们的关注,但多数是研究这类配合物的制备和性质 [3~ 5],而对其进行热化学研究的较少,稀土氨基酸配合物的热力学数据目前尚很缺乏。为此,我们进行了这方面的研究工作。 硝酸铒与丙氨酸固体配合物的合成及相平衡研究已有报道 [3,4],其配位反应的热化学性质研究未见报道。本文用量热法分别测定了配位反应的反应物 [Er(NO3)3· 6H2O+ 4Ala]和产物 [Er(Ala)4(NO3)3· H2…  相似文献   

20.
《Mendeleev Communications》2022,32(3):338-340
Enthalpies of formation in gas phase of three series of energetic derivatives of triazido-s-triazine containing propynyloxy, propynylamine and methylpropynylamine groups were calculated using G4 method. Contributions of each group to the enthalpy of formation of the discussed compounds were estimated in order to apply the increment method for quick estimation of this thermodynamic parameter for substituted s-triazines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号